Skip to main content

Advertisement

Log in

Effect of Low Welding and Rotational Speed on Microstructure and Mechanical Behaviour of Friction Stir Welded AZ31-AA6061-T6

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this paper, the effect of welding and rotational speed on microstructural and mechanical properties has been studied. Unlike eutectic reactions, solid-state diffusion can result in the development of a thin layer of intermetallic compounds (IMC) even when the rotation speed stick to 560 rpm. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive spectroscopy (EDS) were used for microstructural investigation to reveal the grain deformations at weld interface as well as the development of second phase particles. IMCs such as Al12Mg17 and Al3Mg2 were developed in the stir zone (SZ). The initial grain size of base metal (AZ31) was significantly finer as compared to base metal (AA6061-T6), while after processing, the grain size of stir zone became more finer compared to both base metals. The maximum joint strength was obtained at 210 MPa with rotational and welding speed of 560 rpm and 16 mm/min, respectively. Cryo-Charpy impact test was also investigated at four different temperatures, i.e. 25 °C, 0 °C, − 20 °C, and − 40 °C to understand the fracture behaviour at low temperature. Fracture analysis of both tensile as well as impact test has been done to know the mode of failure in both analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lv X, Wu C, Yang C, and Padhy G K, J Mater Process Technol 254 (2018) 145.

    Article  CAS  Google Scholar 

  2. Nagira T, Liu X C, Ushioda K, and Fujii H, Sci Technol Weld Join 25 (2020) 669.

    Article  CAS  Google Scholar 

  3. Zheng B, Hu X, Lv Q, Zhao L, Cai D, and Dong S, Mater Lett 261 (2020) 127138.

    Article  CAS  Google Scholar 

  4. Brassington W D P, and Colegrove P A, Sci Technol Weld Join 22 (2017) 300.

    Article  CAS  Google Scholar 

  5. Shi H, Chen K, Liang Z, Dong F, Yu T, Dong X, Zhang L, and Shan A, J Mater Sci Technol 33 (2017) 359.

    Article  CAS  Google Scholar 

  6. Singh V P, Patel S K, Ranjan A, and Kuriachen B, J Mater Res Technol 9 (2020) 6217.

    Article  CAS  Google Scholar 

  7. Singh V P, Patel S K, Kumar N, and Kuriachen B, Sci Technol Weld Join 24 (2019) 653.

    Article  CAS  Google Scholar 

  8. Singh V P, Patel S K, and Kuriachen B, Intermetallics 133 (2021) 107122.

    Article  CAS  Google Scholar 

  9. Kumar S, Wu C, and Shi L, Metall Mater Trans A 51 (2020) 5725.

    Article  CAS  Google Scholar 

  10. Kar A, Yadav D, Suwas S, and Kailas S V, Mater Charact 164 (2020) 110371.

    Article  CAS  Google Scholar 

  11. Singh V P, Kumar D, Mahto R P, and Kuriachen B (2022) J Mater Eng Perform 1

  12. Patel S K, Singh V P, Roy B S, and Kuriachen B, Mater Sci Eng B 262 (2020) 114708.

    Article  CAS  Google Scholar 

  13. Patel S K, Singh V P, and Kuriachen B, Mater Manuf Process 34 (2019) 1429.

    Article  CAS  Google Scholar 

  14. Kostka A, Coelho R S, Dos Santos J, and Pyzalla A R, Scripta Materialia 60 (2009) 953.

    Article  CAS  Google Scholar 

  15. Wei Y, Xiong J, Li J, Zhang F, and Liang S, Mater Sci Technol 33 (2017) 1208.

    Article  CAS  Google Scholar 

  16. Shah L H, Othman N H, and Gerlich A, Sci Technol Weld Join 23 (2018) 256.

    Article  CAS  Google Scholar 

  17. Yamamoto N, Liao J, Watanabe S, and Nakata K, Mater Trans 50 (2009) 2833.

    Article  CAS  Google Scholar 

  18. Venkateswaran P, and Reynolds A P, Mater Sci Eng A 545 (2012) 26.

    Article  CAS  Google Scholar 

  19. Liang Z, Chen K, Wang X, Yao J, Yang Q, Zhang L, and Shan A, Metall Mater Trans A 44 (2013) 3721.

    Article  CAS  Google Scholar 

  20. Derazkola H A, and Elyasi M, J Manuf Process 35 (2018) 88.

    Article  Google Scholar 

  21. Liu F, Ren D, and Liu L, Mater Design 46 (2013) 419.

    Article  CAS  Google Scholar 

  22. Florea R S, Hubbard C R, Solanki K N, Bammann D J, Whittington W R, and Marin E B, J Mater Process Technol 212 (2012) 2358.

    Article  CAS  Google Scholar 

  23. Xiao L, Liu L, Chen D L, Esmaeili S, and Zhou Y, Mater Sci Eng A 529 (2011) 81.

    Article  CAS  Google Scholar 

  24. Gao M, Tang H G, Chen X F, and Zeng X Y, Mater Design 42 (2012) 46.

    Article  CAS  Google Scholar 

  25. Yong Y A N, Zhang D T, Cheng Q I U, and Zhang W, Trans Nonferrous Metals Soc China 20 (2010) s619.

    Article  Google Scholar 

  26. Chang W S, Rajesh S R, Chun C K, and Kim H J, J Mater Sci Technol 27 (2011) 199.

    Article  CAS  Google Scholar 

  27. Heidarzadeh A, Mironov S, Kaibyshev R, Çam G, Simar A, Gerlich A, and Withers P J, Progr Mater Sci 117 (2021) 100752.

    Article  CAS  Google Scholar 

  28. Patel S K, Singh V P, and Kuriachen B, Trans Indian Inst Metals 72 (2019) 1765.

    Article  CAS  Google Scholar 

  29. Patel S K, Singh V P, Roy B S, and Kuriachen B, J Manuf Process 71 (2021) 85.

    Article  Google Scholar 

  30. Patel S K, Singh V P, Kumar D, Roy B S, and Kuriachen B, Mater Sci Eng B 276 (2022) 115476.

    Article  Google Scholar 

  31. Singh V P, Patel S K, Kuriachen B, and Suman S. in Advances in Additive Manufacturing and Joining: Proceedings of AIMTDR 2018. Springer, Singapore (2019) p. 587

  32. Patel S K, Singh V P, and Kuriachen B. in Advances in Additive Manufacturing and Joining: Proceedings of AIMTDR 2018. Springer, Singapore (2019) p. 579

  33. Ranjole C, Singh V P, Kuriachen B, and Vineesh K P, Arab J Sci Eng 47 (2022) 16103.

    Article  CAS  Google Scholar 

  34. Singh V P, and Kuriachen B, J Mater Eng Perform 31 (2022) 9812.

    Article  CAS  Google Scholar 

  35. Cha J W, and Park S H, J Magnes Alloys 9, 9 (2022)

  36. Zhang L, Zhong H, Li S, Zhao H, Chen J, and Qi L, Int J Fatigue 135 (2020) 105556.

    Article  CAS  Google Scholar 

  37. Satyanarayana M V N V, Bathula S, and Kumar A, Eng Fract Mech 261 (2022) 108236.

    Article  Google Scholar 

  38. Han Y, Jiang X, Yuan T, Chen S, Gong W, Li X, and Yu Z, Sci Technol Weld Join 28 (2023) 72.

    Article  CAS  Google Scholar 

  39. Pugno N M, Matter 4 (2021) 3811.

    Article  CAS  Google Scholar 

  40. Song Y, Ma Y, Chen H, He Z, Chen H, Zhang T, and Gao Z, Mater Sci Eng A 813 (2021) 141129.

    Article  CAS  Google Scholar 

  41. Ramachandran K K, Murugan N, and Kumar S S, Mater Sci Eng A 639 (2015) 219.

    Article  CAS  Google Scholar 

  42. Yan F, Chen B, Yao J, Zhang D, Yan M F, and Zhang Y, J Mater Res Technol 14 (2021) 1559.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Kuriachen.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.P., Kumar, D. & Kuriachen, B. Effect of Low Welding and Rotational Speed on Microstructure and Mechanical Behaviour of Friction Stir Welded AZ31-AA6061-T6. Trans Indian Inst Met 76, 2483–2491 (2023). https://doi.org/10.1007/s12666-023-02971-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02971-9

Keywords

Navigation