Skip to main content
Log in

Numerical Simulation of Macrosegregation in Water-Cooled Heavy Flat Ingot During Solidification

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Based on a volume-averaged two-phase approach, a coupled concentration, temperature, and velocity fields model has been established to predict the formation of macrosegregation during solidification. Because of the significant influence of velocity field on solute transfer and distribution during solidification process, the density of liquid steel was set as a function of temperature and concentration to accurately calculate the velocity field. Therefore, the influence of gravity, temperature gradient, concentration gradient, and volume shrinkage on velocity field distribution was comprehensively considered. The calculation result showed good agreement with previous reports. Thereafter, the current model was applied to simulate the solidification of 12Cr2Mo1R (ASTM standard 2.25Cr1Mo) heavy ingot, and the influence of surface cooling intensity on the final carbon macrosegregation was investigated. The results showed that with the increase of cooling intensity, the solidification time, flow velocity, and mushy zone width decrease, and as a result, macrosegregation is alleviated. When the heat-transfer coefficient is less than 1000 W m−2 K−1, macrosegregation dramatically decreases with the rise of cooling intensity. In contrast, when heat-transfer coefficient is greater than 1000 W m−2 K−1, the effect of reducing the central carbon segregation by increasing cooling is weakened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.C. Flemings, ISIJ Int. 40, 833 (2000).

    Article  Google Scholar 

  2. W.D. Bennon and F.P. Incropera, Metall. Trans. B 18, 611 (1987).

    Article  Google Scholar 

  3. A.V. Reddy and C. Beckermann, Metall. Mater. Trans. B 28, 479 (1997).

    Article  Google Scholar 

  4. D.G. Eskin, J. Zuidema Jr, V.I. Savran, and L. Katgerman, Mater. Sci. Eng. A 384, 232 (2004).

    Article  Google Scholar 

  5. G. Lesoult, Mater. Sci. Eng. A 413, 19 (2005).

    Article  Google Scholar 

  6. J.P. Gu and C. Beckermann, Metall. Mater. Trans. A 30, 1357 (1999).

    Article  Google Scholar 

  7. M.C. Schneider and C. Beckermann, Int. J. Heat Mass Transf. 38, 3445 (1995).

    Article  Google Scholar 

  8. Q.Z. Diao and H.L. Tsai, Metall. Mater. Trans. A 24, 963 (1993).

    Article  Google Scholar 

  9. J. Lee, K. Lee, and J. Mok, ISIJ Int. 45, 1151 (2005).

    Article  Google Scholar 

  10. C. Beckermann, Int. Mater. Rev. 47, 243 (2002).

    Article  Google Scholar 

  11. L.C. Nicolli, A. Mo, and M. M’Hamdi, Metall. Mater. Trans. A 36, 443 (2005).

    Article  Google Scholar 

  12. M.C. Schneider and C. Beckermann, Metall. Mater. Trans. A 26, 2373 (1995).

    Article  Google Scholar 

  13. M.C. Schneider, J.P. Gu, and C. Beckermann, Metall. Mater. Trans. A 28, 1517 (1997).

    Article  Google Scholar 

  14. M. Rappaz and V. Voller, Metall. Mater. Trans. A 21, 749 (1990).

    Article  Google Scholar 

  15. G. Amberg, Int. J. Heat Mass Transf. 34, 217 (1991).

    Article  Google Scholar 

  16. R. Mehrabian and M.C. Flemings, Metall. Mater. Trans. B 1, 455 (1970).

    Article  Google Scholar 

  17. T. Fujii, D.R. Poirier, and M.C. Flemings, Metall. Trans. B 10, 331 (1979).

    Article  Google Scholar 

  18. W.D. Bennon and F.P. Incropera, Int. J. Heat Mass Transf. 30, 2161 (1987).

    Article  MATH  Google Scholar 

  19. W.D. Bennon and F.P. Incropera, Int. J. Heat Mass Transf. 30, 2171 (1987).

    Article  Google Scholar 

  20. C. Beckermann and R. Viskanta, Phys. Chem. Hydrodyn. 10, 195 (1988).

    Google Scholar 

  21. C.Y. Wang and C. Beckermann, Metall. Mater. Trans. A 27, 2754 (1996).

    Article  Google Scholar 

  22. C.Y. Wang and C. Beckermann, Metall. Mater. Trans. A 27, 2765 (1996).

    Article  Google Scholar 

  23. C. Beckermann and C.Y. Wang, Metall. Mater. Trans. A 27, 2784 (1996).

    Article  Google Scholar 

  24. J. Ni and C. Beckermann, Metall. Trans. B 22, 349 (1991).

    Article  Google Scholar 

  25. H. Combeau, M. Založnik, S. Hans, and P.E. Richy, Metall. Mater. Trans. B 40, 289 (2009).

    Article  Google Scholar 

  26. K.C. Chiang and H.L. Tsai, Int. J. Heat Mass Transf. 35, 1771 (1992).

    Article  Google Scholar 

  27. I.L. Ferreira, C.A. Siqueira, C.A. Santos, and A. Garcia, Scr. Mater. 49, 339 (2003).

    Article  Google Scholar 

  28. A.P. Boeira, I.L. Ferreira, and A. Garcia, Mater. Sci. Eng. A 435, 150 (2006).

    Article  Google Scholar 

  29. P.J. Prescott and F.P. Incropera, Metall. Trans. B 22, 529 (1991).

    Article  Google Scholar 

  30. M. Založnik and B. Šarler, Mater. Sci. Eng. A 413, 85 (2005).

    Article  Google Scholar 

  31. M.L.N.M. Melo, E.M.S. Rizzo, and R.G. Santos, Mater. Sci. Eng. A 374, 351 (2004).

    Article  Google Scholar 

  32. U.R. Kattner, JOM 49, 14 (1997).

    Article  Google Scholar 

  33. H.L. Lukas, J. Weiss, and E.T. Henig, CALPHAD 6, 229 (1982).

    Article  Google Scholar 

  34. W.S. Li, H.F. Shen, and B.C. Liu, Steel Res. Int. 81, 994 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express gratefulness and appreciation to the National Natural Science Foundation of China (Grant Nos. 51374018 and 51174020), National High Technology Research and Development Program of China (Grant No. 2013AA031601), and the Fundamental Research Funds for the Central Universities (FRF-SD-12-010A) for financial support in the study. The authors also acknowledge ESI Group for providing the ProCAST software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyong Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Wang, F., Li, C. et al. Numerical Simulation of Macrosegregation in Water-Cooled Heavy Flat Ingot During Solidification. JOM 66, 1166–1174 (2014). https://doi.org/10.1007/s11837-014-1003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1003-2

Keywords

Navigation