Skip to main content
Log in

Simulation of convection and macrosegregation in a large steel ingot

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Melt convection and macrosegregation in casting of a large steel ingot are numerically simulated. The simulation is based on a previously developed model for multicomponent steel solidification with melt convection and involves the solution of fully coupled conservation equations for the transport phenomena in the liquid, mush, and solid. Heat transfer in the mold and insulation materials, as well as the formation of a shrinkage cavity at the top, is taken into account. The numerical results show the evolution of the temperature, melt velocity, and species concentration fields during solidification. The predicted variation of the macrosegregation of carbon and sulfur along the vertical centerline is compared with measurements from an industrial steel ingot that was sectioned and analyzed. Although generally good agreement is obtained, the neglect of sedimentation of free equiaxed grains prevents the prediction of the zone of negative macrosegregation observed in the lower part of the ingot. It is also shown that the inclusion of the shrinkage cavity at the top and the variation of the final solidification temperature due to macrosegregation is important in obtaining good agreement between the predictions and measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974.

    Google Scholar 

  2. A. Hultgren: Scand. J. Met., 1973, vol. 2, p. 217.

    CAS  Google Scholar 

  3. M.C. Flemings: Scand. J. Met., 1976, vol. 5, pp. 1–15.

    CAS  Google Scholar 

  4. H. Fredriksson: Cand. Metall. Q., 1991, vol. 30, pp. 235–44.

    CAS  Google Scholar 

  5. Olsson, R. West, and H. Fredriksson: Scand. J. Met., 1986, vol. 15, pp. 104–12.

    CAS  Google Scholar 

  6. R. Mehrabian and M.C. Flemings: Metall. Trans., 1970, vol. 1, pp. 455–64.

    CAS  Google Scholar 

  7. T. Fujii, D.R. Poirier, and M.C. Flemings: Metall. Trans. B, 1979, vol. 10B, pp. 331–39.

    CAS  Google Scholar 

  8. I. Ohnaka: in “State of the Art of Computer Simulation of Casting and Solidification Processes,” H. Fredriksson, ed., E-MRS, Materials Research Society, Pittsburgh, PA, 1986, pp. 211–23.

    Google Scholar 

  9. B.G. Thomas, I.V. Samarasekera, and J.K. Brimacombe: Metall. Trans. A, 1987, vol. 18B, pp. 119–30.

    CAS  Google Scholar 

  10. W.D. Bennon and F.P. Incropera: Metall. Trans. B, 1987, vol. 18B, pp. 611–16.

    CAS  Google Scholar 

  11. C. Beckermann and R. Viskanta: Physicochem. Hydrodyn., 1988, vol. 10, pp. 195–213.

    CAS  Google Scholar 

  12. C. Beckermann and C.Y. Wang: in Annual Review of Heat Transfer, C.L. Tien, ed., Begell House Inc., New York, NY, 1995, vol. 6.

    Google Scholar 

  13. P.J. Prescott and F.P. Incropera: in Advances in Heat Transfer, J.P. Hartnett, T. Irvine, Y.I. Cho, and G.A. Green, eds., Academic Press, New York, NY, 1996, vol. 28, pp. 231–38.

    Google Scholar 

  14. F. Roch, H. Combeau, I. Poitrault, J.C. Chevrier, and G. Lesoult: Proc. 6th Int. Iron and Steel Congr., vol. 1, Fundamentals, Iron and Steel Institute of Japan, Nagoya, 1990, pp. 665–72.

    Google Scholar 

  15. H. Combeau, F. Roch, I. Poitrault, J.C. Chevrier, and G. Lesoult: in Advanced Computational Methods in Heat Transfer, vol. 3, Phase Change and Combustion Simulation, Springer-Verlag, New York, NY, 1990, pp. 79–90.

    Google Scholar 

  16. F. Roch, H. Combeau, J.C. Chevrier, and G. Lesoult: in Modeling of Casting, Welding and Advanced Solidification Processes V, TMS, Warrendale, PA, 1991, pp. 789–95.

    Google Scholar 

  17. H. Vannier, H. Combeau, and G. Lesoult: in Numerical Methods in Industrial Forming Processes, A.A. Balkema, ed., Rotterdam, The Netherlands, 1992, pp. 835–40.

  18. M.C. Schneider and C. Beckermann: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2373–88.

    CAS  Google Scholar 

  19. A. Kagawa and T. Okamoto: Mater. Sci. Technol., 1986, vol. 2, pp. 997–1008.

    CAS  Google Scholar 

  20. H. Jacobi and K. Schwerdtfeger: Metall. Trans. A, 1976, vol. 7A, pp. 811–20.

    CAS  Google Scholar 

  21. M.C. Schneider, J.P. Gu, C. Beckermann, W.J. Boettinger, and U.R. Kattner: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1517–31.

    Article  CAS  Google Scholar 

  22. J. Miettinen: Metall. Trans. A, 1992, vol. 23A, pp. 1155–70.

    CAS  Google Scholar 

  23. A.A. Howe: Ironmaking and Steelmaking, 1988, vol. 15, pp. 134–42.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, J.P., Beckermann, C. Simulation of convection and macrosegregation in a large steel ingot. Metall Mater Trans A 30, 1357–1366 (1999). https://doi.org/10.1007/s11661-999-0284-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0284-5

Keywords

Navigation