Skip to main content
Log in

Equiaxed dendritic solidification with convection: Part I. Multiscale/multiphase modeling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Equiaxed dendritic solidification in the presence of melt convection and solid-phase transport is investigated in a series of three articles. In part I, a multiphase model is developed to predict com-position and structure evolution in an alloy solidifying with an equiaxed morphology. The model accounts for the transport phenomena occurring on the macroscopic (system) scale, as well as the grain nucleation and growth mechanisms taking place over various microscopic length scales. The present model generalizes a previous multiscale/multiphase model by including liquid melt convec-tion and solid-phase transport. The macroscopic transport equations for the solid and the interdendritic and extradendritic liquid phases are derived using the volume averaging technique and closed by supplementary relations to describe the interfacial transfer terms. In part II, a numerical application of the model to equiaxed dendritic solidification of an Al-Cu alloy in a rectangular cavity is dem-onstrated. Limited experimental validation of the model using a NH4C1-H2O transparent model alloy is provided in part III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

interfacial surface area, m2

A s :

area of the solid/interdendritic liquid interface, m2

A e :

area of the dendrite envelope, m2

b:

body force vector, N/m3

C :

concentration of a chemical species, wt pct

c :

specific heat, J/kg K

C ε :

settling ratio

C p :

shape factor function

d s :

mean characteristic length or diameter of the solid phase, m

d e :

mean characteristic diameter of the dendrite envelope, m

D :

mass diffusion coefficient, m2/s

h :

enthalpy, J/kg

Iv:

Ivantsov function

j :

species diffusion flux, kg/m2 s

J :

interfacial species transfer rate per unit volume

k :

thermal conductivity, W/m K

l :

species diffusion length, m

m l :

liquidus line slope, K/wt pct

Ms d :

solid/liquid interfacial drag, N/m s

n :

equiaxed nuclei density (m-3), or an index in Eqs. [38] and [41]

n:

outwardly directed unit normal vector

ε :

multiphase Pelcet number, εlvl - vsde/Dl

t :

solutal Peclet number at the dendrite tip, VtRt/2Dl

:

ambient Pelcet number for dendrite tips, vl

q :

heat flux, W/m2

Q :

interfacial heat-transfer rate, W/m3

R t :

tip radius

S :

interfacial area concentration, A/V0 (m-1)

Sc:

Schmidt number,vID

t :

time, s

T :

temperature, K

v:

velocity vector, m/s

V k :

volume of phase k, m3

V 0 :

averaging volume, m3

V t :

dendrite tip velocity, m/s

w :

interface velocity, m/s

β :

dimensionless parameter, Eq. [38]

γ :

momentum dispersion coefficient, Eq. [18]

г:

interfacial phase change rate (kg/m3 s) or Gibbs-Thomson coefficient (m K)

г*:

macroscopic transport property

δh:

latent heat of phase change, J/kg

ε:

volume fraction

εsi :

internal solid fraction, εs/(εs + εd )

k :

partition coefficient, wt pct/wt pct

v :

flow partition coefficient

λ2 :

secondary dendrite arm spacing, m

Ø :

sphericity

ρ :

density, kg/m3

Μ :

viscosity, Pa s

Σ* :

stability constant

Τ:

shear stress

Ф:

a general transfer

ψ:

a field property

Ώ:

solutal supersaturation, Eq. [30]

d :

interdendritic liquid

e :

dendrite envelope

E :

eutectic

f :

total liquid phase (d +l)

g :

grain

j :

phasej

k :

phasek

kj:

pertinent to phasek on thek- j interface

l :

extradendritic liquid

Id :

extradendritic-interdendritic liquid interface

m :

melting point of pure metals

n :

normal direction

N :

nucleation

0:

initial state

s :

solid

sd :

solid-interdendritic liquid interface

t :

dendrite tip or tangential

c :

critical

d :

due to diffusion

j :

due to species gradients

t :

macroscopic dispersion

F:

due to interface movement

-:

interfacial area-averaged

*:

effective

References

  1. C.Y. Wang and C. Beckermann:Metall. Trans. A, 1993, vol. 24A, pp. 2787–2802.

    CAS  Google Scholar 

  2. F.P. Incropera and R. Viskanta: Paper presented atOji Int. Seminar on Advanced Heat Transfer in Manufacturing and Processing of New Materials, Tomakomai, Hokkaido, Japan, Oct. 28–31, 1990.

  3. M.C. Schneider and C. Beckermann:Int. J. Heat Mass Transfer, 1995, in press.

  4. M Rappaz:Int. Mater. Rev., 1989, vol. 34, pp. 93–123.

    CAS  Google Scholar 

  5. Ph. Thévoz, J.L. Desbiolles, and M. Rappaz:Metall. Trans. A, 1989, vol. 20A, pp. 311–22.

    Google Scholar 

  6. V.R. Voller, M.S. Stachowicz, and B.G. Thomas:Materials Processing in the Computer Age, TMS, Warrendale, PA, 1991.

    Google Scholar 

  7. T.S. Piwonka, V.R. Voller, and L. Kategerman:Modeling of Casting, Welding and Advanced Solidification Processes VI, TMS, Warrendale, PA, 1993.

    Google Scholar 

  8. S.G.R. Brown and J.A. Spittle:Mater. Sci. Technol., 1989, vol. 5, pp. 362–68.

    CAS  Google Scholar 

  9. P. Zhu and R.W. Smith:Acta Metall. Mater., 1992, vol. 40, pp. 3369- 79.

    Article  CAS  Google Scholar 

  10. M. Rappaz and Ch.-A. Gandin:Acta Metall. Mater., 1993, vol. 42, pp. 345–60.

    Google Scholar 

  11. C.Y. Wang and C. Beckermann:Mater. Sci. Eng. A, 1993, vol. A171, pp. 199–211.

    CAS  Google Scholar 

  12. C.Y. Wang and C. Beckermann:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1081–93.

    CAS  Google Scholar 

  13. J. Ni and C. Beckermann:Metall. Trans. B, 1991, vol. 22B, pp. 349- 61.

    CAS  Google Scholar 

  14. C.Y. Wang and C. Beckermann:Metall. Mater. Trans. A, 1995, vol. 27A, pp. 0000–00.

    Google Scholar 

  15. C.Y. Wang and C. Beckermann:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 0000–00.

    Google Scholar 

  16. C.Y. Wang: Ph.D. Thesis, The University of Iowa, Iowa City, IA, 1994.

  17. M. Rappaz and Ph. Thévoz:Acta Metall., 1987, vol. 35, pp. 1487- 97.

    Article  CAS  Google Scholar 

  18. H. Brenner and D.A. Edwards:Macrotransport Processes, Butterworth Scientific, London, 1993.

    Google Scholar 

  19. C.Y. Wang, S. Ahuja, C. Beckermann, and H.C. de Groh III:Metall. Mater. Trans. B, 1995, vol. 26B, pp. 111–19.

    Article  CAS  Google Scholar 

  20. P.M. Adler:J. Coll. Int. Sci., 1981, vol. 81, pp. 531–35.

    Article  CAS  Google Scholar 

  21. D.M. Stefanescu, G. Upadhya, and D. Bandyopahyoy:Metall. Trans. A, 1990, vol. 21A, pp. 997–1005.

    CAS  Google Scholar 

  22. J. Lipton, M.E. Glicksman, and W. Kurz:Mater. Sci. Eng., 1984, vol. 65, pp. 57–63.

    Article  CAS  Google Scholar 

  23. C.Y. Wang and C. Beckermann: inMicro/Macro Scale Phenomena in Solidification, C. Beckermann, H.P. Wang, L.A. Bertram, M.S. Sohal & S.I. Guceri, eds., ASME, New York, NY, 1992, ASME HTD- vol. 218/AMD-vol. 139, pp. 43–57.

    Google Scholar 

  24. S.C. Huang and M.E. Glicksman:Acta Metall., 1981, vol. 29, pp. 701–15.

    Article  CAS  Google Scholar 

  25. R. Ananth and W.N. Gill:J. Cryst. Growth, 1991, vol. 108, pp. 173–89.

    Article  CAS  Google Scholar 

  26. P.C. Carman:Flow of Gases through Porous Media, Butterworth Scientific, London, 1956.

    Google Scholar 

  27. M.C. Flemings:Solidification Processing, McGraw-Hill, New York, NY, 1974.

    Google Scholar 

  28. J. Happel and H. Brenner:Low Reynolds Number Hydrodynamics, Noordhoff International Publishing, 1976.

  29. C. de Groh III, P.D. Weidman, R. Zakhem, S. Ahuja, and C. Beckermann:Metall. Trans. B, 1993, vol. 24B, pp. 749–53.

    Google Scholar 

  30. S. Ahuja: Master’s Thesis, The University of Iowa, Iowa City, IA, 1992.

    Google Scholar 

  31. P.K. Agarwal:Chem. Sci. Eng., 1988, vol. 43, pp. 2501–10.

    Article  CAS  Google Scholar 

  32. J. Ni and C. Beckermann:J. Mater. Processing Manufacturing Sci., 1993, vol. 2, pp. 217–31.

    CAS  Google Scholar 

  33. A. Ramani: Master’s Thesis, The University of Iowa, Iowa City, IA, 1995.

    Google Scholar 

  34. R.H. Davis:Adv. Colloid Interface Sci., 1993, vol. 43, pp. 17–50.

    Article  CAS  Google Scholar 

  35. I.M. Krieger:Adv. Colloid Interface Sci., 1972, vol. 3, pp. 111–36.

    Article  CAS  Google Scholar 

  36. M.C. Flemings:Metall. Trans. A, 1991, vol. 22A, pp. 957–81.

    CAS  Google Scholar 

  37. L. Arnberg, G. Chai, and L. Backerud:Mater. Sci. Eng., 1993, vol. A173, pp. 101–03. $

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C.Y., Beckermann, C. Equiaxed dendritic solidification with convection: Part I. Multiscale/multiphase modeling. Metall Mater Trans A 27, 2754–2764 (1996). https://doi.org/10.1007/BF02652369

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652369

Keywords

Navigation