Skip to main content
Log in

Equiaxed dendritic solidification with convection: Part II. Numerical simulations for an Al-4 Wt pct Cu alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The multiphase model developed in part I for equiaxed dendritic solidification with melt convection and solid-phase transport is applied to numerically predict structural and compositional development in an Al-4 wt pct Cu alloy solidifying in a rectangular cavity. A numerical technique combining a fully implicit control-volume-based finite difference method with a multiple time-step scheme is developed for accurate and efficient simulations of both micro- and macroscale phenomena. Quantitative results for the dendritic microstructure evolution in the presence of melt convection and solid movement are obtained. The remarkable effects of the solid-liquid multiphase flow pattern on macrosegregation as well as the grain size distribution are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

concentration of a chemical species, wt pct

c :

specific heat, J/kg K

C :

settling ratio

d e :

mean characteristic diameter of the dendrite envelope, m

D :

mass diffusion coefficient, m2/s

h :

chill heat-transfer coefficient (W/m2 K) or enthalpy (J/kg)

Iv:

Ivantsov function

k :

thermal conductivity, W/m K

l :

species diffusion length, m

m l :

liquidus line slope, K/wt pct

Ms d :

solid/liquid interfacial drag, N/m s

n :

equiaxed nuclei density, m-3

n :

outwardly directed unit normal vector

Pe :

multiphase Pelcet number, ⃛l|vl -v s|de/Dl

Pet :

solutal Peclet number at the dendrite tip,-V tRt/2Dl

Pe∞:

ambient Pelcet number for dendrite tips, |vl -

R t :

tip radius, m

S :

interfacial area concentration, m-1

t :

time, s

T :

temperature, K

T :

cooling rate,∂T/∂t (K/s)

v:

velocity vector, m/s

w :

interface velocity, m/s

β :

dimensionless parameter

γ :

momentum dispersion coefficient

γ:

interfacial phase change rate (kg/m3 s) or Gibbs-Thomson coefficient (m K)

δh :

latent heat of phase change, J/kg

⃛:

volume fraction

si :

internal solid fraction, ⃛s/(⃛ s + ⃛d)

k :

partition coefficient, wt pct/wt pct

k v :

flow partition coefficient

λ 2 :

secondary dendrite arm spacing, m

λ p :

slip coefficient for solid, m

p :

density, kg/m3

Μ :

viscosity, Pa s

Σ* :

stability constant

ψ :

a field property

Ω :

solutal supersaturation,(C e- Cl)/[Ce(l-k)]

d :

interdendritic liquid

e :

dendrite envelope

E :

eutectic point

eff:

effective

f :

total liquid phase(d + l)

g :

grain

k :

phasek

I :

extradendritic liquid

L :

liquidus

Id :

extradendritic-interdendritic liquid interface

m :

melting point of pure metals

n :

normal direction

N :

nucleation

0:

initial state

s :

solid

sd :

solid-interdendritic liquid interface

t :

dendrite tip or tangential

w :

wall

c :

critical

-:

interfacial area-averaged

*:

effective

References

  1. M. Rappaz:Int. Mater. Rev., 1989, vol. 34, pp. 93–123.

    CAS  Google Scholar 

  2. Ph. Thévoz, J.L. Desbiolles, and M. Rappaz:Metall. Trans. A, 1989, vol. 20A, pp. 311–22.

    Google Scholar 

  3. J. Ni and C. Beckermann:J. Mater. Processing Manufacturing Sci., 1993, vol. 2, pp. 217–31.

    CAS  Google Scholar 

  4. C.Y. Wang and C. Beckermann:Metall. Mater. Trans. A, 1995, vol. 27A, pp. 0000–00.

    Google Scholar 

  5. W. Kurz and D.J. Fisher:Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1989, p. 91.

    Google Scholar 

  6. C.Y. Wang, S. Ahuja, C. Beckermann, and H.C. de Groh III:Metall. Mater. Trans. B, 1995, vol. 26B, pp. 111–19.

    Article  CAS  Google Scholar 

  7. J. Ding and D. Gidaspow:AIChE J., 1990, vol. 36, pp. 523–38.

    Article  CAS  Google Scholar 

  8. D.M. Stefanescu, G. Upadhya, and D. Bandyopahyoy:Metall. Trans. A, 1990, vol. 21A, pp 997–1005.

    CAS  Google Scholar 

  9. R. Ananth and W.N. Gill:J. Crystal Growth, 1991, vol. 108, pp. 173- 89.

    Article  CAS  Google Scholar 

  10. C.Y. Wang: Ph.D. Thesis, The University of Iowa, Iowa City, A, 1994.

  11. S. Ganesan and D.R. Poirier:Metall. Trans. A, 1987, vol. 18A, pp. 721–23.

    CAS  Google Scholar 

  12. S.V. Patankar:Numerical Heat Transfer and Fluid Flow, HeMisphere PublishIng Corp., New York, NY, 1980.

    Google Scholar 

  13. D.B. Spalding: inRecent Advances in Numerical Methods in FluiDs, C. Taylor and K. MorGan, eds., Pineridge Press, Swansea, 1981, vol. 1, pp. 139–67.

    Google Scholar 

  14. M. Rappaz and Ph. Thévoz:Acta Metall., 1987, vol. 35, pp. 1487- 97.

    Article  CAS  Google Scholar 

  15. C.Y. Wang and C. Beckermann: inMaterials Processing in the Computer Age II, V.R. Voller, S.P. Marsh, and N. El-Kaddah, eds., TMS, Warrendale, PA, 1995, pp. 129–43.

    Google Scholar 

  16. V.R. Voller:Numerical Heat Transfer, 1990, vol. 17, pp. 155–69.

    Google Scholar 

  17. R. Mehrabian, M.A. Keane, and M.C. Flemings:Metall. Trans., 1970, vol. 1, pp. 3238–41.

    CAS  Google Scholar 

  18. W.D. Bennon and F.P. Incropera:Metall. Trans. B, 1987, vol. 18B, pp. 611–16.

    CAS  Google Scholar 

  19. S.D. Felicelli, J.C. Heinrich, and D.R. Pokier:Metall. Trans. B, 1991, vol. 22B, pp. 847–59.

    CAS  Google Scholar 

  20. M.C. Schneider and C. Beckermann:Int. J. Heat Mass Transfer, 1995, in press.

  21. L.H. Shaw, J. Beech, and R.H. Hickley:Ironmaking and Steelmaking, 1986, vol. 3, pp. 154–60.

    Google Scholar 

  22. A. Hellawell, J.R. Sarazin, and R.S. Stuebe:Phil. Trans. R. Soc. Lond. A, 1993, vol. 345, pp. 507–44.

    Article  CAS  Google Scholar 

  23. H. Jones:Mater. Sci. Eng., 1984, vol. 65, pp. 145–56. $

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C.Y., Beckermann, C. Equiaxed dendritic solidification with convection: Part II. Numerical simulations for an Al-4 Wt pct Cu alloy. Metall Mater Trans A 27, 2765–2783 (1996). https://doi.org/10.1007/BF02652370

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652370

Keywords

Navigation