Skip to main content
Log in

Somatic embryogenesis and mass spectrometric identification of proteins related to somatic embryogenesis in Eruca sativa

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Several different proteins expressed in embryogenic and nonembryogenic Eruca sativa calli were identified by combining one-dimensional SDS-PAGE protein mapping with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. By querying the widely recognized MASCOT search engine, it was found that three of the proteins that were particularly strongly expressed in the embryogenic callus represented sucrose synthase, phospholipase D, and enolase, respectively. RT-PCR analysis also confirmed that the gene coding for enolase was transcribed especially strongly in the embryogenic callus but not in nonembyogenic callus. Finally, the relationship between the three proteins and somatic embryogenesis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BAP:

Benzylaminopurine

2,4-D:

2,4-Dichlorophenoxyacetic acid

EC:

Embryogenic callus

NAA:

α-Naphthaleneacetic acid

NEC:

Nonembryogenic callus

MM:

Molecular mass

SE:

Somatic embryo

MTG:

4-Methylthiobutyl glucosinolates

PLD:

Phospholipase D

SuSy:

Sucrose synthase

ZE:

Zygotic embryo

References

  • Aquea F, Arce-Johnson P (2008) Identification of genes expressed during early somatic embryogenesis in Pinus radiata. Plant Physiol Biochem 46:559–568

    Article  PubMed  CAS  Google Scholar 

  • Baldwin TC, Domingo C, Schindler T, Seetharaman G, Stacey N, Roberts K (2001) DcAGP1, a secreted arabinogalactan protein, is related to a family of basic proline-rich proteins. Plant Mol Biol 45:421–435

    Article  PubMed  CAS  Google Scholar 

  • Barbieri G, Angelis L, Feo S, Cossu G, Giallongo A (1990) Differential expression of muscle-specific enolase in embryonic and fetal myogenic cells during mouse development. Differentiation 45:179–184

    Article  PubMed  CAS  Google Scholar 

  • Bonnessen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 61:6120–6130

    Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C-M, van Lammeren AAM, Miki BLA, Custers JBM, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carpita N, Vergara C (1998) BOTANY: enhanced: a recipe for cellulose. Science 279:672–673

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Zhang XB, Jiang JL, Wang XY (2011) Plantlet regeneration from cotyledon, cotyledon petiole, and hypocotyl explants via somatic embryogenesis pathway in roquette (Eruca sativa Mill). Plant Biosyst 145:68–76

    Article  Google Scholar 

  • Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    Article  PubMed  CAS  Google Scholar 

  • Chourey PS, Taliercio EW, Carlson SJ, Ruan YL (1998) Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Mol Gen Genet 259:88–96

    Article  PubMed  CAS  Google Scholar 

  • Cowan A (2006) Phospholipids as plant growth regulators. Plant Growth Regul 48:97–109

    Article  CAS  Google Scholar 

  • Delaquis PJ, Mazza G (1995) Antimicrobial properties of isothiocyanates in food preservation. Food Technol 49:73–84

    CAS  Google Scholar 

  • Doehlert DC (1990) Fructokinases from developing maize kernels differ in their specificity for nucleoside triphosphates. Plant Physiol 93:353–355

    Article  PubMed  CAS  Google Scholar 

  • Forsthoefel NR, Cushman MAF, Cushman JC (1995) Posttranscriptional and posttranslational control of enolase expression in the facultative crassulacean acid metabolism plant Mesembryanthemum crystallinum L. Plant Physiol 108:1185–1195

    Article  PubMed  CAS  Google Scholar 

  • Geigenberger P, Stitt M (1993) Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta 189:329–339

    Article  CAS  Google Scholar 

  • Goldsworthy A, Mina MG (1991) Electrical patterns of tobacco cells in media containing indole-3-acetic acid or 2,4-dichlorophenoxyacetic acid. Planta 183:368–373

    Google Scholar 

  • Griga M, Horáček J, Klenotičová H (2007) Protein patterns associated with Pisum sativum somatic embryogenesis. Biol Plant 51:201–211

    Article  CAS  Google Scholar 

  • Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:431–444

    Article  PubMed  CAS  Google Scholar 

  • Imin N, Jong FD, Mathesius U, Noorden Gv, Saeed NA, Wang X-D, Rose RJ, Rolfe BG (2004) Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts. Proteomics 4:1883–1896

    Article  PubMed  CAS  Google Scholar 

  • Iori R, Bernardi R, Gueyrard D, Rollin P, Palmieri S (1999) Formation of glucoraphanin by chemoselective oxidation of natural glucoerucin: a chemoenzymatic route to sulforaphane. Bioorg Med Chem Lett 9:1047–1048

    Article  PubMed  CAS  Google Scholar 

  • Iraqi D, Tremblay FM (2001) Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J Exp Bot 52:2301–2311

    Article  PubMed  CAS  Google Scholar 

  • Jimenez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Rev Bras Fisiol Veg 13:196–223

    Article  Google Scholar 

  • Kawahara R, Komamine A (1995) Molecular basis of somatic embryogenesis. In: Bajaj YPS (ed) Molecular basis of somatic embryogenesis. Springer, Berlin, pp 30–40

    Google Scholar 

  • Konrádová H, Lipavsk H, Albrechtov J, Vreugdenhil D (2002) Sucrose metabolism during somatic and zygotic embryogeneses in Norway spruce: content of soluble saccharides and localisation of key enzyme activities. J Plant Physiol 159:387–396

    Article  Google Scholar 

  • Lal SK, Lee C, Sachs MM (1998) Differential regulation of enolase during anaerobiosis in maize. Plant Physiol 118:1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu J-K (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21:2692–2702

    Article  PubMed  CAS  Google Scholar 

  • Leskovšek L, Jakše M, Bohanec B (2008) Doubled haploid production in rocket (Eruca sativa Mill.) through isolated microspore culture. Plant Cell Tissue Organ Cult 93:181–189

    Article  Google Scholar 

  • Lippert D, Zhuang J, Ralph S, Ellis DE (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473

    Article  PubMed  CAS  Google Scholar 

  • Marsoni M, Bracale M, Espen L, Prinsi B, Negri A, Vannini C (2008) Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27:347–356

    Article  PubMed  CAS  Google Scholar 

  • Meinke DW, Franzmann LH, Nickle TC, Yeung EC (1994) Leafy cotyledon mutants of Arabidopsis. Plant Cell 6:1049–1064

    Article  PubMed  CAS  Google Scholar 

  • Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric 80:967–984

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:472–497

    Article  Google Scholar 

  • Nogueira F, Gonçalves E, Jereissati E, Santos M, Costa J, Oliveira-Neto O, Soares A, Domont G, Campos F (2007) Proteome analysis of embryogenic cell suspensions of cowpea (Vigna unguiculata). Plant Cell Rep 26:1333–1343

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Guan R, Zhu S, Deng X (2009) Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep 28:281–289

    Article  PubMed  Google Scholar 

  • Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    PubMed  CAS  Google Scholar 

  • Smith AM, Denyer K, Martin CR (1995) What controls the amount and structure of starch in storage organs? Plant Physiol 107:673–677

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Belmonte MF, van Zyl L, Craig DL, Liu W, Yeung EC, Sederoff RR (2004) The effect of reduced glutathione on morphology and gene expression of white spruce (Picea glauca) somatic embryos. J Exp Bot 55:695–709

    Article  PubMed  CAS  Google Scholar 

  • Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    Google Scholar 

  • Tremblay L, Tremblay FM (1995) Maturation of black spruce somatic embryos: sucrose hydrolysis and resulting osmotic pressure of the medium. Plant Cell Tissue Organ Cult 42:39–46

    Article  CAS  Google Scholar 

  • Wang X (2000) Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Prog Lipid Res 39:109–149

    Article  PubMed  CAS  Google Scholar 

  • Wang YF, Cui KR, Chen KM, Gao QX, Zhang DH, Jiao CJ (1993) Studies on cell embryology and dynamics of starch during somatic embryogenesis. Acta Biol Exp Sin 26:259–267

    CAS  Google Scholar 

  • Winkelmann T, Heintz D, Van Dorsselaer A, Serek M, Braun H-P (2006) Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta 224:508–519

    Article  PubMed  CAS  Google Scholar 

  • Yaniv Z, Schafferman D, Amar Z (1998) Tradition, uses and biodiversity of rocket (Eruca sativa, Brassicaceae) in Israel. Econ Bot 52:394–400

  • Zhang T, Cao Z, Wang X (2005) Induction of somatic embryogenesis and plant regeneration from cotyledon and hypocotyl explants of Eruca sativa mill. In Vitro Cell Dev Biol Plant 41:655–657

    Article  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed  Google Scholar 

  • Zuo J, Niu Q-W, Frugis G, Chua N-H (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Yu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Wu, HJ., Chen, JF. et al. Somatic embryogenesis and mass spectrometric identification of proteins related to somatic embryogenesis in Eruca sativa . Plant Biotechnol Rep 6, 113–122 (2012). https://doi.org/10.1007/s11816-011-0203-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-011-0203-2

Keywords

Navigation