Skip to main content
Log in

The impact of agent density on scalability in collective systems: noise-induced versus majority-based bistability

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

In this paper, we show that non-uniform distributions in swarms of agents have an impact on the scalability of collective decision-making. In particular, we highlight the relevance of noise-induced bistability in very sparse swarm systems and the failure of these systems to scale. Our work is based on three decision models. In the first model, each agent can change its decision after being recruited by a nearby agent. The second model captures the dynamics of dense swarms controlled by the majority rule (i.e., agents switch their opinion to comply with that of the majority of their neighbors). The third model combines the first two, with the aim of studying the role of non-uniform swarm density in the performance of collective decision-making. Based on the three models, we formulate a set of requirements for convergence and scalability in collective decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. In “Appendix 1,” we provide an alternative approach to define swarm density based on areas.

  2. As defined in Sect. 3.2, sparse systems have a majority of nodes with degree two or less: \(P(X=0) + P(X=1) + P(X=2) > 0.5\).

  3. See “Appendix 2.”

  4. The source code of the agent-based simulator can be downloaded at: http://github.com/NESTLab/DMSim.

References

  • Angluin, D., Aspnes, J., & Eisenstat, D. (2008). A simple population protocol for fast robust approximate majority. Distributed Computing, 21(2), 87–102.

    Article  MATH  Google Scholar 

  • Arnold, L. (2003). Random dynamical systems. Berlin: Springer.

    Google Scholar 

  • Beckers, R., Deneubourg, J.-L., Goss, S., & Pasteels, J. M. (1990). Collective decision making through food recruitment. Insectes Sociaux, 37(3), 258–267.

    Article  Google Scholar 

  • Biancalani, T., Dyson, L., & McKane, A. J. (2014). Noise-induced bistable states and their mean switching time in foraging colonies. Physical Review Letters, 112, 038101.

    Article  Google Scholar 

  • Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.

    Article  Google Scholar 

  • Dussutour, A., Beekman, M., Nicolis, S. C., & Meyer, B. (2009). Noise improves collective decision-making by ants in dynamic environments. Proceedings of the Royal Society London B, 276, 4353–4361.

    Article  Google Scholar 

  • Dyson, L., Yates, C., Buhl, J., & McKane, A. (2015). Onset of collective motion in locusts is captured by a minimal model. Physical Review E, 92(5), 052708.

    Article  Google Scholar 

  • Galam, S. (2000). Real space renormalization group and totalitarian paradox of majority rule voting. Physica A: Statistical Mechanics and its Applications, 285(1–2), 66–76.

    Article  MathSciNet  MATH  Google Scholar 

  • Gardiner, C. W. (1985). Handbook of stochastic methods for physics, chemistry and the natural sciences. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Grüter, C., Schürch, R., Czaczkes, T., Taylor, K., Durance, T., Jones, S., et al. (2012). Negative feedback enables fast and flexible collective decision-making in ants. PLoS ONE, 7(9), e44501.

    Article  Google Scholar 

  • Gutiérrez, Á., Campo, A., Monasterio-Huelin, F., Magdalena, L., & Dorigo, M. (2010). Collective decision-making based on social odometry. Neural Computing and Applications, 19(6), 807–823.

    Article  Google Scholar 

  • Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., et al. (2007). Social integration of robots into groups of cockroaches to control self-organized choices. Science, 318(5853), 1155–1158.

    Article  Google Scholar 

  • Hamann, H., Karsai, I., & Schmickl, T. (2013). Time delay implies cost on task switching: A model to investigate the efficiency of task partitioning. Bulletin of Mathematical Biology, 75(7), 1181–1206.

    Article  MathSciNet  MATH  Google Scholar 

  • Hamann, H., Valentini, G., Khaluf, Y., & Dorigo, M. (2014). Derivation of a micro-macro link for collective decision-making systems: Uncover network features based on drift measurements. In T. Bartz-Beielstein, J. Branke, B. Filipič, & J. Smith (Eds.), 13th International conference on parallel problem solving from nature (PPSN 2014), volume 8672 of LNCS (pp. 181–190). Berlin: Springer.

  • Hamann, H., & Wörn, H. (2008). A framework of space-time continuous models for algorithm design in swarm robotics. Swarm Intelligence, 2(2–4), 209–239.

    Article  Google Scholar 

  • Houchmandzadeh, B., & Vallade, M. (2015). Exact results for a noise-induced bistable system. Physical Review E, 91(2), 022115.

    Article  MathSciNet  Google Scholar 

  • Huepe, C., Zschaler, G., Do, A.-L., & Gross, T. (2011). Adaptive-network models of swarm dynamics. New Journal of Physics, 13(7), 073022.

    Article  Google Scholar 

  • Hunter, J. J. (2005). Stationary distributions and mean first passage times of perturbed Markov chains. Linear Algebra and its Applications, 410, 217–243.

    Article  MathSciNet  MATH  Google Scholar 

  • Hunter, J. J. (2007). Simple procedures for finding mean first passage times in Markov chains. Asia-Pacific Journal of Operational Research, 24(06), 813–829.

    Article  MathSciNet  MATH  Google Scholar 

  • Ijspeert, A. J., Martinoli, A., Billard, A., & Gambardella, L. M. (2001). Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots, 11, 149–171.

    Article  MATH  Google Scholar 

  • Jeanne, R. L. (1986). The organization of work in Polybia occidentalis: Costs and benefits of specialization in a social wasp. Behavioral Ecology and Sociobiology, 19(5), 333–341.

    Article  Google Scholar 

  • Khaluf, Y., & Dorigo, M. (2016). Modeling robot swarms using integrals of birth-death processes. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 11(2), 8.

    Google Scholar 

  • Khaluf, Y., & Hamann, H. (2016). On the definition of self-organizing systems: Relevance of positive/negative feedback and fluctuations. In ANTS 2016, volume 9882 of LNCS (p. 298). Berlin: Springer.

  • Lerman, K., Martinoli, A., & Galstyan, A. (2005). A review of probabilistic macroscopic models for swarm robotic systems. In E. Şahin, & W. M. Spears (Eds.), Swarm robotics—SAB 2004 International workshop, volume 3342 of LNCS (pp. 143–152). Berlin: Springer.

  • Mallon, E., Pratt, S., & Franks, N. (2001). Individual and collective decision-making during nest site selection by the ant Leptothorax albipennis. Behavioral Ecology and Sociobiology, 50(4), 352–359.

    Article  Google Scholar 

  • Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: A case study in collaborative distributed manipulation. International Journal of Robotics Research, 23(4), 415–436.

    Article  Google Scholar 

  • Meyer, B., Beekman, M., & Dussutour, A. (2008). Noise-induced adaptive decision-making in ant-foraging. In Simulation of adaptive behavior (SAB), number 5040 in LNCS (pp. 415–425). Berlin: Springer.

  • Montes de Oca, M., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., & Dorigo, M. (2011). Majority-rule opinion dynamics with differential latency: A mechanism for self-organized collective decision-making. Swarm Intelligence, 5(3–4), 305–327.

    Article  Google Scholar 

  • Ohkubo, J., Shnerb, N., & Kessler, D. A. (2008). Transition phenomena induced by internal noise and quasi-absorbing state. Journal of the Physical Society of Japan, 77(4), 044002.

    Article  Google Scholar 

  • Olfati-Saber, R., Fax, A., & Murray, R. M. (2007). Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1), 215–233.

    Article  Google Scholar 

  • Reina, A., Miletitch, R., Dorigo, M., & Trianni, V. (2015a). A quantitative micro-macro link for collective decisions: The shortest path discovery/selection example. Swarm Intelligence, 9(2–3), 75–102.

    Article  Google Scholar 

  • Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015b). A design pattern for decentralised decision making. PLoS ONE, 10(10), e0140950.

    Article  Google Scholar 

  • Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-assembly in a thousand-robot swarm. Science, 345(6198), 795–799.

    Article  Google Scholar 

  • Saffre, F., Furey, R., Krafft, B., & Deneubourg, J.-L. (1999). Collective decision-making in social spiders: Dragline-mediated amplification process acts as a recruitment mechanism. Journal of Theoretical Biology, 198, 507–517.

    Article  Google Scholar 

  • Schmickl, T., & Hamann, H. (2011). BEECLUST: A swarm algorithm derived from honeybees. In Y. Xiao (Ed.), Bio-inspired computing and communication networks. Boca Raton: CRC Press.

    Google Scholar 

  • Seeley, T. D., Camazine, S., & Sneyd, J. (1991). Collective decision-making in honey bees: How colonies choose among nectar sources. Behavioral Ecology and Sociobiology, 28(4), 277–290.

    Article  Google Scholar 

  • Seeley, T. D., Visscher, P., Schlegel, T., Hogan, P., Franks, N., & Marshall, J. (2012). Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science, 335(6064), 108–111.

    Article  Google Scholar 

  • Streit, R. (2010). Poisson point processes: Imaging, tracking, and sensing. New York: Springer.

    Book  Google Scholar 

  • Szopek, M., Schmickl, T., Thenius, R., Radspieler, G., & Crailsheim, K. (2013). Dynamics of collective decision making of honeybees in complex temperature fields. PLoS ONE, 8(10), e76250.

    Article  Google Scholar 

  • Togashi, Y., & Kaneko, K. (2001). Transitions induced by the discreteness of molecules in a small autocatalytic system. Physical Review Letters, 86, 2459–2462.

    Article  Google Scholar 

  • Valentini, G., Ferrante, E., & Dorigo, M. (2017). The best-of-n problem in robot swarms: Formalization, state of the art, and novel perspectives. Frontiers in Robotics and AI, 4, 9.

    Article  Google Scholar 

  • Valentini, G., Ferrante, E., Hamann, H., & Dorigo, M. (2015). Collective decision with 100 Kilobots: Speed versus accuracy in binary discrimination problems. Autonomous Agents and Multi-Agent Systems, 30(3), 553–580.

    Article  Google Scholar 

  • Valentini, G., & Hamann, H. (2015). Time-variant feedback processes in collective decision-making systems: Influence and effect of dynamic neighborhood sizes. Swarm Intelligence, 9(2–3), 153–176.

    Article  Google Scholar 

  • Valentini, G., Hamann, H., & Dorigo, M. (2014). Self-organized collective decision making: The weighted voter model. In Lomuscio, A., Scerri, P., Bazzan, A., & Huhns, M., (eds), Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’14, (pp. 45–52). IFAAMAS.

  • Yates, C., Erban, R., Escudero, C., Couzin, I., Buhl, J., Kevrekidis, I., et al. (2009). Inherent noise can facilitate coherence in collective swarm motion. PNAS, 106(14), 5464–5469.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the European Union’s Horizon 2020 research and innovation program under the FET Grant “flora robotica,” No. 640959.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yara Khaluf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (gif 9787 KB)

Appendices

Appendix 1: Agent density in terms of area

For a given swarm size N and a given area A the swarm density is given by \(\rho =N/A\). For simplicity we set the area to \(A=1\) [space unit]. We also require the concept of a critical swarm size \(N_\mathrm{c}\) that corresponds to a critical swarm density \(\rho _\mathrm{c}=N_\mathrm{c}/A=N_\mathrm{c}\).

The node degree \(\lambda \), as mentioned above, defines the group size \(\lambda +1\) of an agent. We compute the area \(A_\mathrm{s}\) covered by an agent’s sensor as \(A_\mathrm{s}=\pi u^2\) (for sensor range u), and we assume \(A_\mathrm{s}\ll A\). We get the expected node degree

$$\begin{aligned} \lambda = \rho A_\mathrm{s}=NA_\mathrm{s}. \end{aligned}$$
(28)

Hence, the swarm density is defined in terms of swarm size N and node degree \(\lambda \) or group size \(\lambda +1\) for fixed sensor range u, where N or \(\rho \) can be varied. Note that the uniform distribution used for the agents approaches the imposed density \(\rho \) averaged over big areas but may vary considerably within small areas because the agents are not distributed with equidistant positions. Hence, the local node degrees vary as well.

Appendix 2: Computation of MFPT of a Markov chain model

For a Markov chain model we can compute the MFPT from state i to state j (Hunter 2005, 2007) as

$$\begin{aligned} m_{i,j} = p_{i,j} + \sum _{k \ne j} p_{i,k} (m_{k,j} + 1), \end{aligned}$$
(29)

for the transition probability matrix P of the Markov chain with entries \(p_{i,j}\). Our Markov chain is ergodic; thus, the mean first passage time can be computed using the fundamental matrix F of the Markov chain which is defined as

$$\begin{aligned} F = (I - P + S)^{-1}, \end{aligned}$$
(30)

where I is the identity matrix and \(S=\lim _{t\rightarrow \infty }P^t\) is a matrix whose rows are equal to each other and given by the stationary distribution s. An entry \(f_{i,j}\) of F gives the expected number of visits to transient state \(s_j\) if the system is started in transient state \(s_i\). Here we can compute M with entries \(m_{i,j}\) giving the MFPT from state i to state j using the fundamental matrix of the ergodic chain by

$$\begin{aligned} m_{i,j} = \dfrac{f_{j,j}-f_{i,j}}{s_j}. \end{aligned}$$
(31)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaluf, Y., Pinciroli, C., Valentini, G. et al. The impact of agent density on scalability in collective systems: noise-induced versus majority-based bistability. Swarm Intell 11, 155–179 (2017). https://doi.org/10.1007/s11721-017-0137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-017-0137-6

Keywords

Navigation