Skip to main content
Log in

A framework of space–time continuous models for algorithm design in swarm robotics

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Designing and analyzing self-organizing systems such as robotic swarms is a challenging task even though we have complete knowledge about the robot’s interior. It is difficult to determine the individual robot’s behavior based on the swarm behavior and vice versa due to the high number of agent–agent interactions. A step towards a solution of this problem is the development of appropriate models which accurately predict the swarm behavior based on a specified control algorithm. Such models would reduce the necessary number of time-consuming simulations and experiments during the design process of an algorithm. In this paper we propose a model with focus on an explicit representation of space because the effectiveness of many swarm robotic scenarios depends on spatial inhomogeneity. We use methods of statistical physics to address spatiality. Starting from a description of a single robot we derive an abstract model of swarm motion. The model is then extended to a generic model framework of communicating robots. In two examples we validate models against simulation results. Our experience shows that qualitative correctness is easily achieved, while quantitative correctness is disproportionately more difficult but still possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bettstetter, C. (2004). On the connectivity of Ad Hoc networks. The Computer Journal, 47(4), 432–447.

    Article  Google Scholar 

  • Bjerknes, J. D., Winfield, A., & Melhuish, C. (2007). An analysis of emergent taxis in a wireless connected swarm of mobile robots. In IEEE swarm intelligence symposium (pp. 45–52). Los Alamitos, CA: IEEE Press.

    Chapter  Google Scholar 

  • Brown, R. (1828). A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philosophical Magazine, 4, 161–173.

    Google Scholar 

  • Correll, N. (2007). Coordination schemes for distributed boundary coverage with a swarm of miniature robots: synthesis, analysis and experimental validation. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne.

  • Correll, N., & Martinoli, A. (2006). System identification of self-organizing robotic swarms. In M. Gini & R. Voyles (Eds.), Proceedings of the 8th int. symp. on distributed autonomous robotic systems (DARS’06) (pp. 31–40). Berlin: Springer.

    Chapter  Google Scholar 

  • Crank, J., & Nicolson, P. (1947). A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. In Proceedings of the Cambridge philosophical society (Vol. 43, pp. 50–64).

  • Deguet, J., Demazeau, Y., & Magnin, L. (2006). Elements about the emergence issue: A survey of emergence definitions. Complexus, 3(1–3), 24–31.

    Article  Google Scholar 

  • Doob, J. L. (1953). Stochastic processes. New York: Wiley.

    MATH  Google Scholar 

  • Edelstein-Keshet, L. (2006). Mathematical models of swarming and social aggregation. Robotica, 24(3), 315–324.

    Article  Google Scholar 

  • Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik, 17, 549–560.

    Article  Google Scholar 

  • Feddema, J. T., Lewis, C., & Schoenwald, D. A. (2002). Decentralized control of cooperative robotic vehicles: theory and application. IEEE Transactions on Robotics and Automation, 18(5), 852–864.

    Article  Google Scholar 

  • Fokker, A. D. (1914). Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Annalen der Physik, 348(5), 810–820.

    Article  Google Scholar 

  • Galstyan, A., Hogg, T., & Lerman, K. (2005). Modeling and mathematical analysis of swarms of microscopic robots. In Proceedings of IEEE swarm intelligence symposium (SIS’05) (pp. 201–208). Los Alamitos, CA: IEEE Press.

    Chapter  Google Scholar 

  • Gazi, V., & Passino, K. M. (2003). Stability analysis of swarms. IEEE Transactions on Automatic Control, 48(4), 692–697.

    Article  MathSciNet  Google Scholar 

  • Grünbaum, D., & Okubo, A. (1994). Modeling social animal aggregations. Frontiers in Theoretical Biology, 100, 296–325.

    Google Scholar 

  • Haken, H. (1977). Synergetics—an introduction. Berlin: Springer.

    MATH  Google Scholar 

  • Hamann, H., & Wörn, H. (2007a). An analytical and spatial model of foraging in a swarm of robots. In E. Şahin, W. Spears, & A. F. Winfield (Eds.), Lecture notes in computer science : Vol. 4433. Swarm robotics—second SAB 2006 international workshop (pp. 43–55). Berlin: Springer.

    Google Scholar 

  • Hamann, H., & Wörn, H. (2007b). A space- and time-continuous model of self-organizing robot swarms for design support. In First IEEE international conference on self-adaptive and self-organizing systems (SASO’07) (pp. 23–31). Los Alamitos, CA: IEEE Press.

    Chapter  Google Scholar 

  • Helbing, D., Schweitzer, F., Keltsch, J., & Molnar, P. (1997). Active walker model for the formation of human and animal trail systems. Physical Review E, 56(3), 2527–2539.

    Article  Google Scholar 

  • Higham, N. J. (2002). Accuracy and stability of numerical algorithms. Society for industrial and applied mathematics.

  • Hogg, T. (2006). Coordinating microscopic robots in viscous fluids. Autonomous Agents and Multi-Agent Systems, 14(3), 271–305.

    Article  MathSciNet  Google Scholar 

  • Holland, J. H. (1998). Emergence—from chaos to order. New York: Oxford University Press.

    MATH  Google Scholar 

  • Kolmogorov, A. N. (1931). Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Mathematische Annalen, 104(1), 415–458.

    Article  MATH  MathSciNet  Google Scholar 

  • Langevin, P. (1908). Sur la théorie du mouvement brownien. Comptes-rendus de l’Académie des Sciences, 146, 530–532.

    MATH  Google Scholar 

  • Langton, C. G. (Eds.). (1989). Artificial life: proceedings of an interdisciplinary workshop on the synthesis and simulation of living systems. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Lemons, D. S., & Gythiel, A. (1997). Paul Langevin’s 1908 paper “On the theory of Brownian motion” [“Sur la théorie du mouvement brownien,” Comptes-rendus de l’Académie des Sciences (Paris) 146, 530–533 (1908)]. American Journal of Physics, 65(11), 1079–1081.

    Article  Google Scholar 

  • Lerman, K., Martinoli, A., & Galstyan, A. (2005). A review of probabilistic macroscopic models for swarm robotic systems. In E. Şahin & W. M. Spears (Eds.), Swarm robotics—SAB 2004 international workshop (pp. 143–152). Berlin: Springer.

    Google Scholar 

  • Martinoli, A. (1999). Swarm intelligence in autonomous collective robotics: from tools to the analysis and synthesis of distributed control strategies. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne.

  • Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: A case study in collaborative distributed manipulation. International Journal of Robotics Research, 23(4), 415–436.

    Article  Google Scholar 

  • McCanne, S., Floyd, S., Fall, K., & Varadhan, K. et al. (1997). Network simulator—ns-2. http://www-mash.cs.berkeley.edu/ns/.

  • Mogilner, A., & Edelstein-Keshet, L. (1999). A non-local model for a swarm. Journal of Mathematical Biology, 38(6), 534–570.

    Article  MATH  MathSciNet  Google Scholar 

  • Nembrini, J., Winfield, A. F., & Melhuish, C. (2002). Minimalist coherent swarming of wireless networked autonomous mobile robots. In B. Hallam, D. Floreano, J. Hallam, G. Hayes, & J.-A. Meyer (Eds.), Proceedings of the seventh international conference on simulation of adaptive behavior (From animals to animats) (pp. 373–382). Cambridge, MA: MIT Press.

    Google Scholar 

  • Von Neumann, J. (1966). The theory of self-reproducing automata. Champaign, IL: University of Illinois Press. Arthur Burks (ed.).

    Google Scholar 

  • Okubo, A. (1986). Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds. Advances in Biophysics, 22, 1–94.

    Article  Google Scholar 

  • Okubo, A., & Levin, S. A. (2001). Diffusion and ecological problems: modern perspectives. Berlin: Springer.

    Google Scholar 

  • Planck, M. (1917). Über einen Satz der statistischen Dynamik and seine Erweiterung in der Quantentheorie. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 24, 324–341.

    Google Scholar 

  • Risken, H. (1984). The Fokker–Planck equation. Berlin: Springer.

    MATH  Google Scholar 

  • Schillo, M., Fischer, K., & Klein, C. T. (2000). The micro-macro link in DAI and sociology. In S. Moss & P. Davidsson (Eds.), Lecture notes in computer science : Vol. 1979. Multi-agent-based simulation: second international workshop, (MABS’00) (pp. 303–317). Berlin: Springer.

    Google Scholar 

  • Schmickl, T., & Crailsheim, K. (2006). Trophallaxis among swarm-robots: A biologically inspired strategy for swarm robotics. In The first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics (BioRob’06) (pp. 377–382). Los Alamitos, CA: IEEE Press.

    Chapter  Google Scholar 

  • Schmickl, T., & Crailsheim, K. (2008). Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm. Autonomous Robots 25(1–2):171–188.

    Article  Google Scholar 

  • Schmickl, T., Möslinger, C., & Crailsheim, K. (2007a). Collective perception in a robot swarm. In E. Şahin, W. M. Spears, & A. F. Winfield (Eds.), Lecture notes in computer science : Vol. 4433. Swarm robotics—second SAB 2006 international workshop (pp. 144–157). Berlin: Springer.

    Google Scholar 

  • Schmickl, T., Möslinger, C., Thenius, R., & Crailsheim, K. (2007b). Bio-inspired navigation of autonomous robots in heterogenous environments. International Journal of Factory Automation, Robotics and Soft Computing, 3, 164–170.

    Google Scholar 

  • Schmickl, T., Möslinger, C., Thenius, R., & Crailsheim, K. (2007c). Individual adaptation allows collective path-finding in a robotic swarm. International Journal of Factory Automation, Robotics and Soft Computing, 4, 102–108.

    Google Scholar 

  • Schweitzer, F. (2003). Brownian agents and active particles. On the emergence of complex behavior in the natural and social sciences. Berlin: Springer.

    Google Scholar 

  • Von Smoluchowski, M. (1906). Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Annalen der Physik, 21, 756–780.

    Article  Google Scholar 

  • Soysal, O., & Şahin, E. (2007). A macroscopic model for self-organized aggregation in swarm robotic systems. In E. Şahin, W. M. Spears, & A. F. Winfield (Eds.), Lecture notes in computer science : Vol. 4433. Swarm robotics—second SAB 2006 international workshop (pp. 27–42). Berlin: Springer.

    Google Scholar 

  • van Kampen, N. G. (1981). Stochastic processes in physics and chemistry. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 6(75), 1226–1229.

    Article  Google Scholar 

  • Winfield, A. F. T., Sav, J., Fernández-Gago, M.-C., Dixon, C., & Fisher, M. (2005). On formal specification of emergent behaviours in swarm robotic systems. International Journal of Advanced Robotic Systems, 2(4), 363–370.

    Google Scholar 

  • Yamins, D. (2005). Towards a theory of “local to global” in distributed multi-agent systems. In Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems (AAMS’05) (pp. 183–190). New York: ACM.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Hamann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamann, H., Wörn, H. A framework of space–time continuous models for algorithm design in swarm robotics. Swarm Intell 2, 209–239 (2008). https://doi.org/10.1007/s11721-008-0015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-008-0015-3

Keywords

Navigation