Skip to main content
Log in

Collective decision-making based on social odometry

  • Swarm Robotics
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a swarm intelligence localization strategy in which robots have to locate different resource areas in a bounded arena and forage between them. The robots have no knowledge of the arena dimensions and of the number of resource areas. The strategy is based on peer-to-peer local communication without the need for any central unit. Social Odometry leads to a self-organized path selection. We show how collective decisions lead the robots to choose the closest resource site from a central place. Results are presented with simulated and real robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. This time initialization is used only for evaluation purposes.

  2. Further details on the robot platform can be found at http://www.e-puck.org.

  3. For an exhaustive description of the board see http://www.rbz.es/randb/.

  4. Note that when a robot spins in place we consider the distance traveled as the arc made by one of the wheels. Therefore, \(\Delta{d^{i}_{k+1}}=\xi^{i}_{k+1}\cdot\rho/2\), where ρ is the distance between the wheels (53 mm for the e-puck) and \(\xi^{i}_{k+1}\) is the angular displacement made in the time step duration.

References

  • Balch T, Arkin RC (1994) Communication in reactive multiagent robotic systems. Auton Robots 1(1):1–25

    Google Scholar 

  • Beckers R, Deneubourg J-L, Goss S (1992) Trails and U-turns in the selection of a path by the ant Lasius niger. J Theor Biol 159(4):397–415

    Article  Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New York

    MATH  Google Scholar 

  • Brooks RA (1986) A robust layered control system for a mobile robot. IEEE J Robotics Autom 2(1): 14–23

    Google Scholar 

  • Burgard W, Fox D, Hennig D, Schmidt T (1996) Estimating the absolute position of a mobile robot using position probability grids. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence. AAAI Press/MIT Press, Cambridge, pp 896–901

  • Burgard W, Derr A, Fox D, Cremers AB (1998) Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, IEEE Press, Piscataway, pp 1–6

  • Camazine S (1993) The regulation of pollen foraging by honey bees: how foragers assess the colony’s need for pollen. Behav Ecol Sociobiol 32(4):265–273

    Article  Google Scholar 

  • Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2003) Self-organization in biological systems. Princeton studies in complexity. Princeton University Press, Princeton

    Google Scholar 

  • Campo A, Nouyan S, Birattari M, Groß R, Dorigo M (2006) Negotiation of goal direction for cooperative transport. In: Ant colony optimization and swarm intelligence, 5th International Workshop, ANTS 2006, Brussels, Belgium, September 4–7, 2006, Proceedings. Lecture Notes in Computer Science. Springer, Berlin, pp 191–202

  • Cassandra AR, Kaelbling LP, Kurien JA (1996) Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems. IEEE Press, Piscataway, pp 963–972

  • Chong K, Kleeman L (1997) Accurate odometry and error modelling for a mobile robot. In: Proceedings of the IEEE International Conference on Robotics and Automation. IEEE Press, Piscataway, pp 2783–2788

  • Christensen AL (2005) Efficient neuro-evolution of hole-avoidance and phototaxis for a swarm-bot. Tech. Rep. 2005-014, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

  • Corradi P, Schmickl T, Scholz P, Menciassi A, Dario P (2009) Optical networking in a swarm of microrobots. In: Cheng MX (ed) NanoNet. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer, pp 107–119

  • Crailsheim K (1992) The flow of jelly within a honeybee colony. J Comp Physiol B 162(8):681–689

    Article  Google Scholar 

  • Deneubourg J-L, Aron S, Goss S, Pasteels JM (1990) The self-organizing exploratory pattern of the Argentine ant. J Insect Behav 3(1):159–168

    Article  Google Scholar 

  • Dudek G, Mackenzie P (1993) Model-based map construction for robot localization. In: Proceedings of Vision Interface. CIPPR Society Press, Toronto, pp 97–102

  • Feng L, Borenstein J, Everett H (1994) Where am I? Sensors and methods for autonomous mobile robot positioning. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Grabowski R, Navarro-Serment L, Paredis C, Khosla P (2000) Heterogeneous teams of modular robots for mapping and exploration. Auton Robots 8(2):293–308

    Article  Google Scholar 

  • Gutiérrez A, Campo A, Dorigo M, Amor D, Magdalena L, Monasterio-Huelin F (2008a) An open localization and local communication embodied sensor. Sensors 8(11):7545–7563

    Article  Google Scholar 

  • Gutiérrez A, Campo A, Santos FC, Pinciroli C, Dorigo M (2008b) Social odometry in populations of autonomous robots. In: Ant Colony Optimization and Swarm Intelligence, 6th International Conference, ANTS 2008, Brussels, Belgium, September 2008, Proceedings. Lecture Notes in Computer Science. Springer, Berlin, Germany, pp 371–378

  • Gutiérrez A, Campo A, Dorigo M, Donate J, Monasterio-Huelin F, Magdalena L (2009a) Open e-puck range and bearing miniaturized board for local communication in swarm robotics. In: Proceedings of the IEEE International Conference on Robotics and Automation. IEEE Press, Piscataway, pp 3111–3116

  • Gutiérrez A, Campo A, Fernández D, Monasterio-Huelin F, Magdalena L, Dorigo M (2009b) Social odometry: a self-organized distributed location algorithm. Tech Rep 2009-014, IRIDIA, Université Libre de Bruxelles, Brusseles, Belgium

  • Gutiérrez A, Campo A, Santos FC, Monasterio-Huelin F, Dorigo M (2009c) Imitation based odometry in collective robotics. Int J Adv Rob Sys 6(2):129–136

    Google Scholar 

  • Gutmann J, Weigel T, Nebel B (2001) A fast, accurate, and robust method for self-localization in polygonal environments using laser-rangefinders. Adv Robotics J 14(1):1–17

    Google Scholar 

  • Gutmann JS, Weigel T, Nebel B (1999) Fast, accurate and robust self-localization in polygonal environments. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems. IEEE Press, Piscataway, pp 1412–1419

  • Hammerstein P (2003) Genetic and cultural evolution of cooperation. MIT Press, Cambridge

    Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng Ser D 82(1):35–45

    Google Scholar 

  • Korst P, Velthuis H (1982) The nature of trophallaxis in honeybees. Insectes Sociaux 29(2):209–221

    Article  Google Scholar 

  • Kurazume R, Hirose S, Nagata S, Sashida N (1996) Study on cooperative positioning system (basic principle and measurement experiment). In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems. IEEE Press, Piscataway, pp 1421–1426

  • Larsen T, Bak M, Andersen N, Ravn O (1998) Location estimation for autonomously guided vehicle using an augmented Kalman filter to autocalibrate the odometry. In: FUSION 98 Spie Conference. CSREA Press, Las Vegas, NV, pp 33–39

  • Liebig J, Heinze J, Hölldobler B (1997) Trophallaxis and aggression in the ponerine ant, Ponera coarctata: implications for the evolution of liquid food exchange in the hymenoptera. Ethology 103(9):707–722

    Article  Google Scholar 

  • Martinelli A, Siegwart R (2003) Estimating the odometry error of a mobile robot during navigation. In: Proceedings of the 1st European Conference on Mobile Robots. Warszawa, Poland: Zturek Research Scientific Inst. Press, pp 218–223

  • Matarić MJ (1997) Learning social behavior. Robotics Auton Syst 20(2):191–204

    Article  Google Scholar 

  • McLurkin J, Smith J (2004) Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. In: Proceedings of the Seventh International Symposium on Distributed Autonomous Robotic Systems. Springer, Berlin, pp 131–142

  • Mondada F, Bonani M, Raemy X, Pugh J, Cianci C, Klaptocz A, Magnenat S, Zufferey JC, Floreano D, Martinoli A (2009) The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions. IPCB-Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal, pp 59–65

  • Nouyan S, Campo A, Dorigo M (2008) Path formation in a robot swarm: self-organized strategies to find your way home. Swarm Intell 2(1):1–23

    Article  Google Scholar 

  • Nouyan S, Groß R, Bonani M, Mondada F, Dorigo M (2009) Teamwork in self-organized robot colonies. IEEE Trans Evol Comput 13(4):695–711

    Google Scholar 

  • Parker LE (1998) Alliance: an architecture for fault tolerant multirobot cooperation. IEEE Trans Robotics Autom 14(2):220–240

    Article  Google Scholar 

  • Payton D, Daily M, Estowski R, Howard M, Lee C (2001) Pheromone robotics. Auton Robots 11(3):319–324

    Article  MATH  Google Scholar 

  • Payton D, Estkowski R, Howard M (2003) Compound behaviors in pheromone robotics. Robotics and Auton Syst 44(3):229–240

    Article  Google Scholar 

  • Purnamadjaja AH, Russell RA (2004) Pheromone communicate: implementation of necrophoric bee behaviour in a robot swarm. In: Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics. IEEE Press, Piscataway, pp 638–643

  • Rekleitis I, Dudek G, Milios E (2001) Multi-robot collaboration for robust exploration. Ann Math Artif Intell 31(1):7–40

    Article  Google Scholar 

  • Rekleitis I, Dudek G, Milios E (2003) Probabilistic cooperative localization and mapping in practice. In: Proceedings of the IEEE International Conference on Robotics and Automation. IEEE Press, Piscataway, pp 1907–1912

  • Russell R (1995) Laying and sensing odor markings as a strategy for assisting mobile robots navigation tasks. IEEE Robotics Autom Mag 2(3):3–9

    Article  Google Scholar 

  • Russell R (1999) Ant trails—an example for robots to follow? In: Proceedings of the IEEE International Conference on Robotics and Automation. IEEE Press, Piscataway, pp 2698–2703

  • Santos FC, Pacheco JM, Lenaerts T (2006) Cooperation prevails when individuals adjust their social ties. PLoS Comput Biol 2(10):e140

    Article  Google Scholar 

  • Schmickl T, Crailsheim K (2008) Throphallaxis within a robotic swarm: bio-inspired communication among robots in a swarm. Auton Robots 25(1):171–188

    Article  Google Scholar 

  • Simmons R, Koenig S (1995) Probabilistic robot navigation in partially observable environments. In: Proceedings of the International Joint Conference on Artificial Intelligence. Morgan Kaufmann, San Mateo, pp 1080–1087

  • Simon D (2006) Optimal state estimation: Kalman, H Infinity, and nonlinear approaches. Wiley, London

    Google Scholar 

  • Smith RC, Cheeseman P (1987) On the representation and estimation of spatial uncertainly. Int J Robotics Res 5(4):56–68

    Google Scholar 

  • Stella E, Musio F, Vasanelli L, Distante A (1995) Goal-oriented mobile robot navigation using an odour sensor. In: Proceedings of the Intelligent Vehicles Symposium. IEEE Press, Piscataway, pp 147–151

  • Svennebring J, Koenig S (2003) Trail-laying robots for robust terrain coverage. In: Proceedings of the IEEE International Conference on Robotics and Automation. IEEE Press, Piscataway, pp 75–82

  • Szymanski M, Breitling T, Seyfried J, Wörn H (2006) Distributed shortest-path finding by a micro-robot swarm. In Ant Colony Optimization and Swarm Intelligence, 5th International Workshop, ANTS 2006, Brussels, Belgium, September 4–7, 2006, Proceedings, Lecture Notes in Computer Science, Springer, Germany, pp 404–411

  • Traulsen A, Nowak M, Pacheco J (2006) Stochastic dynamics of invasion and fixation. Phys Rev Ser E 74(1):011,909.1–011,909.5

  • Traulsen A, Pacheco J, Nowak M (2007) Pairwise comparison and selection temperature in evolutionary game dynamics. J Theo Biol 246(3):522–529

    Article  MathSciNet  Google Scholar 

  • Valdastri P, Corradi P, Menciassi A, Schmickl T, Crailsheim K, Seyfired J, Dario P (2006) Micromanipulation, communication and swarm intelligence issues in a swarm microrobotic platform. Robotics Auton Syst 54(10):789–804

    Article  Google Scholar 

  • Vaughan R, Støy K, Sukhatme G, Matarić M (2002) LOST: localization-space trails for robot teams. IEEE Trans Robotics Autom 18(5):796–812

    Article  Google Scholar 

  • Wagner IA, Lindembaum M, Bruckstein AM (1999) Distributed covering by ant-robots using evaporating traces. IEEE Trans Robotics Autom 15(5):918–933

    Article  Google Scholar 

  • Wang CM (1988) Location estimation and uncertainty analysis for mobile robots. Auton Robot Veh 1(1):1230–1235

    Google Scholar 

  • Wheeler W (1918) A study of some ant larvae, with consideration of the origin and meaning of the social habit among insects. Proc Am Phil Soc 57(1):293–343

    Google Scholar 

Download references

Acknowledgments

A. Campo and M. Dorigo acknowledge support from the Belgian F.R.S.-FNRS, of which they are a Research Fellow and a Research Director, respectively. This work was partially supported by the Gestión de la Demanda Eléctrica Doméstica con Energía Solar Fotovoltaica project, funded by the Plan Nacional de I+D+i 2007-2010 (ENE2007-66135) of the Spanish Ministerio de Educación y Ciencia and the N4C—Networking for Challenged Communications Citizens: Innovative Alliances and Test beds project, funded by the Seventh Framework Program (FP7-ICT-223994-N4C) of the European Commission. The information provided is the sole responsibility of the authors and does not reflect the European Commission’s opinion. The Spanish Ministry and the European Commission are not responsible for any use that might be made of data appearing in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Gutiérrez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, Á., Campo, A., Monasterio-Huelin, F. et al. Collective decision-making based on social odometry. Neural Comput & Applic 19, 807–823 (2010). https://doi.org/10.1007/s00521-010-0380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-010-0380-x

Keywords

Navigation