Skip to main content
Log in

Collective decision with 100 Kilobots: speed versus accuracy in binary discrimination problems

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

Achieving fast and accurate collective decisions with a large number of simple agents without relying on a central planning unit or on global communication is essential for developing complex collective behaviors. In this paper, we investigate the speed versus accuracy trade-off in collective decision-making in the context of a binary discrimination problem—i.e., how a swarm can collectively determine the best of two options. We describe a novel, fully distributed collective decision-making strategy that only requires agents with minimal capabilities and is faster than previous approaches. We evaluate our strategy experimentally, using a swarm of 100 Kilobots, and we study it theoretically, using both continuum and finite-size models. We find that the main factor affecting the speed versus accuracy trade-off of our strategy is the agents’ neighborhood size—i.e., the number of agents with whom the current opinion of each agent is shared. The proposed strategy and the associated theoretical framework can be used to design swarms that take collective decisions at a given level of speed and/or accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.

    Article  Google Scholar 

  2. Brutschy, A., Scheidler, A., Ferrante, E., Dorigo, M., & Birattari, M. (2012). Can ants inspire robots? Self-organized decision making in robotic swarms. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4272–4273). IEEE Press.

  3. Campo, A., Garnier, S., Dédriche, O., Zekkri, M., & Dorigo, M. (2010). Self-organized discrimination of resources. PLoS One, 6(5), e19,888.

    Article  Google Scholar 

  4. Clifford, P., & Sudbury, A. (1973). A model for spatial conflict. Biometrika, 60(3), 581–588.

    Article  MathSciNet  MATH  Google Scholar 

  5. Deffuant, G., Neau, D., Amblard, F., & Weisbuch, G. (2000). Mixing beliefs among interacting agents. Advances in Complex Systems, 3(01–04), 87–98.

    Article  Google Scholar 

  6. Franks, N. R., Dornhaus, A., Fitzsimmons, J. P., & Stevens, M. (2003). Speed versus accuracy in collective decision making. Proceedings of the Royal Society of London B, 270, 2457–2463.

    Article  Google Scholar 

  7. Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F., & Sumpter, D. J. T. (2002). Information flow, opinion polling and collective intelligence in house-hunting social insects. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1427), 1567–1583.

    Article  Google Scholar 

  8. Galam, S. (1986). Majority rule, hierarchical structures, and democratic totalitarianism: A statistical approach. Journal of Mathematical Psychology, 30(4), 426–434.

    Article  MATH  Google Scholar 

  9. Garnier, S., Gautrais, J., Asadpour, M., Jost, C., & Theraulaz, G. (2009). Self-organized aggregation triggers collective decision making in a group of cockroach-like robots. Adaptive Behavior, 17(2), 109–133.

    Article  Google Scholar 

  10. Garnier, S., Gautrais, J., & Theraulaz, G. (2007). The biological principles of swarm intelligence. Swarm Intelligence, 1(1), 3–31.

    Article  Google Scholar 

  11. Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25), 2340–2361.

    Article  Google Scholar 

  12. Hamann, H. (2013). Towards swarm calculus: Urn models of collective decisions and universal properties of swarm performance. Swarm Intelligence, 7(2–3), 145–172.

    Article  Google Scholar 

  13. Hatano, Y., & Mesbahi, M. (2005). Agreement over random networks. IEEE Transactions on Automatic Control, 50(11), 1867–1872.

    Article  MathSciNet  Google Scholar 

  14. Jøsang, A., Ismail, R., & Boyd, C. (2007). A survey of trust and reputation systems for online service provision. Decision Support Systems, 43(2), 618–644.

    Article  Google Scholar 

  15. Kernbach, S., Thenius, R., Kernbach, O., & Schmickl, T. (2009). Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic system. Adaptive Behavior, 17(3), 237–259.

    Article  Google Scholar 

  16. Lerman, K., Martinoli, A., & Galstyan, A. (2005). A review of probabilistic macroscopic models for swarm robotic systems. In Swarm robotics, LNCS (Vol. 3342, pp. 143–152). Berlin: Springer.

  17. Liggett, T. M. (1999). Stochastic interacting systems: Contact, voter and exclusion processes. In Grundlehren der mathematischen Wissenschaften (Vol. 324). Berlin: Springer.

  18. List, C. (2004). Democracy in animal groups: A political science perspective. Trends in Ecology & Evolution, 19(4), 168–169.

    Article  Google Scholar 

  19. Marshall, J. A., Bogacz, R., Dornhaus, A., \({\tilde{\rm P}}\)lanqué, R., Kovacs, T., & Franks, N. R. (2009). On optimal decision-making in brains and social insect colonies. Journal of the Royal Society Interface, 6(40), 1065–1074.

  20. Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: A case study in collaborative distributed manipulation. The International Journal of Robotics Research, 23(4–5), 415–436.

    Article  Google Scholar 

  21. Martinoli, A., Ijspeert, A., & Mondada, F. (1999). Understanding collective aggregation mechanisms: From probabilistic modelling to experiments with real robots. Robotics and Autonomous Systems, 29(1), 51–63.

    Article  Google Scholar 

  22. Mathews, N., Valentini, G., Christensen, A. L., O’Grady, R., Brutschy, A., & Dorigo, M. (2015). Spatially targeted communication in decentralized multirobot systems. Autonomous Robots, 38(4), 439–457.

    Article  Google Scholar 

  23. Mesbahi, M., & Egerstedt, M. (2010). Graph theoretic methods in multiagent networks. Princeton, NJ: Princeton University Press.

    Book  MATH  Google Scholar 

  24. Montes de Oca, M., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., & Dorigo, M., (2011). Majority-rule opinion dynamics with differential latency: A mechanism for self-organized collective decision-making. Swarm Intelligence, 5, 305–327.

  25. Parker, C. A. C., & Zhang, H. (2009). Cooperative decision-making in decentralized multiple-robot systems: The best-of-n problem. IEEE/ASME Transactions on Mechatronics, 14(2), 240–251.

    Article  Google Scholar 

  26. Parker, C. A. C., & Zhang, H. (2010). Collective unary decision-making by decentralized multiple-robot systems applied to the task-sequencing problem. Swarm Intelligence, 4, 199–220.

    Article  Google Scholar 

  27. Passino, K. M., & Seeley, T. D. (2006). Modeling and analysis of nest-site selection by honeybee swarms: The speed and accuracy trade-off. Behavioral Ecology and Sociobiology, 59(3), 427–442.

    Article  Google Scholar 

  28. Reina, A., Miletitch, R., Dorigo, M., & Trianni, V. (2015). A quantitative micro-macro link for collective decisions: The shortest path discovery/selection example. Swarm Intelligence, 9(2–3), 75–102.

    Article  Google Scholar 

  29. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015). A design pattern for decentralized decision making. PLoS One, 10(10), e0140950.

    Article  Google Scholar 

  30. Ren, W., Beard, R., & Atkins, E. (2005) A survey of consensus problems in multi-agent coordination. In Proceedings of the 2005 American Control Conference (Vol. 3, pp. 1859–1864). IEEE Press.

  31. Ren, W., & Beard, R. W. (2008). Distributed consensus in multi-vehicle cooperative control: Theory and applications, communications and control engineering. Berlin: Springer.

    Book  MATH  Google Scholar 

  32. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., & Nagpal, R. (2014). Kilobot: A low cost robot with scalable operations designed for collective behaviors. Robotics and Autonomous Systems, 62(7), 966–975.

    Article  Google Scholar 

  33. Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., & Nagpal, R. (2013). Collective transport of complex objects by simple robots: Theory and experiments. In T. Ito, C. Jonker, M. Gini, & O. Shehory (Eds.), Proceedings of the 12th international conference on autonomous agents and multiagent systems, AAMAS ’13 (pp. 47–54). IFAAMAS.

  34. Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-assembly in a thousand-robot swarm. Science, 345(6198), 795–799.

    Article  Google Scholar 

  35. Sartoretti, G., Hongler, M. O., de Oliveira, M., & Mondada, F. (2014). Decentralized self-selection of swarm trajectories: From dynamical systems theory to robotic implementation. Swarm Intelligence, 8(4), 329–351.

    Article  Google Scholar 

  36. Scheidler, A. (2011). Dynamics of majority rule with differential latencies. Physical Review E, 83(031), 116.

    Google Scholar 

  37. Scheidler, A., Brutschy, A., Ferrante, E., & Dorigo, M. (2015). The k-unanimity rule for self-organized decision-making in swarms of robots. IEEE Transactions on Cybernetics, PP(99), 1.

  38. Seeley, T. D. (2010). Honeybee democracy. Princeton, NJ: Princeton University Press.

    Google Scholar 

  39. Soysal, O., & Şahin, E. (2007). A macroscopic model for self-organized aggregation in swarm robotic systems. In E. Şahin, W. M. Spears, & A. F. Winfield (Eds.), Swarm robotics, LNCS (Vol. 4433, pp. 27–42). Berlin: Springer.

    Chapter  Google Scholar 

  40. Sumpter, D. J. (2010). Collective animal behavior. Princeton, NJ: Princeton University Press.

    Book  MATH  Google Scholar 

  41. Toral, R., & Tessone, C. J. (2007). Finite size effects in the dynamics of opinion formation. Communications in Computational Physics, 2(2), 177–195.

    MathSciNet  Google Scholar 

  42. van Kampen, N. G. (1992). Stochastic processes in physics and chemistry. Amsterdam, NL: Elsevier.

    MATH  Google Scholar 

  43. von Frisch, K. (1967). The dance language and orientation of bees. Cambridge, MA: Harvard University Press.

    Google Scholar 

  44. Valentini, G., Birattari, M., & Dorigo, M. (2013) Majority rule with differential latency: An absorbing Markov chain to model consensus. In Proceedings of the European conference on complex systems 2012, Proceedings in complexity (pp. 651–658). Berlin: Springer.

  45. Valentini, G., Ferrante, E., Hamann, H., & Dorigo, M. (2015). Collective decision with 100 kilobots: Speed vs accuracy in binary discrimination problems. http://iridia.ulb.ac.be/supp/IridiaSupp2015-005/. Supplementary material.

  46. Valentini, G., & Hamann, H. (2015). Time-variant feedback processes in collective decision-making systems: Influence and effect of dynamic neighborhood sizes. Swarm Intelligence, 9(2–3), 153–176.

    Article  Google Scholar 

  47. Valentini, G., Hamann, H., & Dorigo, M. (2014). Self-organized collective decision making: The weighted voter model. In A. Lomuscio, P. Scerri, A. Bazzan, & M. Huhns (Eds.), Proceedings of the 13th international conference on autonomous agents and multiagent systems, AAMAS ’14 (pp. 45–52). IFAAMAS.

  48. Valentini, G., Hamann, H., & Dorigo, M. (2015). Efficient decision-making in a self-organizing robot swarm: On the speed versus accuracy trade-off. In Proceedings of the 14th International conference on autonomous agents and multiagent systems, AAMAS ’15 (pp. 1305–1314). IFAAMAS.

  49. Valentini, G., Hamann, H., & Dorigo, M. (2015). Self-organized collective decisions in a robot swarm. In Proceedings of the 29th AAAI conference on artificial intelligence, AI Video Competition. AAAI Press. http://youtu.be/5lz_HnOLBW4.

  50. Vigelius, M., Meyer, B., & Pascoe, G. (2014). Multiscale modelling and analysis of collective decision making in swarm robotics. PLoS One, 9(11), e111542.

    Article  Google Scholar 

  51. Wang, Y., & Vassileva, J. (2003). Trust and reputation model in peer-to-peer networks. In Proceedings of the third international conference on peer-to-peer computing (P2P 2003) (pp. 150–157). IEEE Press.

Download references

Acknowledgments

This work has been partially supported by the European Research Council through the ERC Advanced Grant “E-SWARM: Engineering Swarm Intelligence Systems” (Contract 246939) and by the EU-H2020-FET Project ‘flora robotica’, No. 640959. Marco Dorigo acknowledges support from the Belgian F.R.S.–FNRS. Eliseo Ferrante acknowledges support from the Fund for Scientific Research (FWO), Flanders, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Valentini.

Appendix

Appendix

We performed additional robot experiments to estimate the values of the average group size \(\mathcal {G}\) in the two settings and that of the time \(\sigma ^{-1}\) necessary to exploration a site. Each Kilobot records internally its series of exploration times and that of the number of neighbors at decision time. After an entire experiment, the acquired data are downloaded from the robots using a wired connection. We had to limit the number of experiments for data acquisition because it is very time-consuming. Specifically, we performed four runs: two runs to measure the actual average group size in the two settings (\(\mathcal {G}_{\mathrm{max}}=5\) and \(\mathcal {G}_{\mathrm{max}}=25\)); and two runs to measure the average time required to complete the exploration of a site, again in the two settings.

Fig. 14
figure 14

The figure shows the results form the statistical analysis performed on the additional robot experiments: a probability mass function of the group size \(\mathcal {G}\) for the two parameter settings \(\mathcal {G}_{\mathrm{max}}=5\) (green) and \(\mathcal {G}_{\mathrm{max}}=25\) (purple), b probability density function of the time \(\sigma ^{-1}\) necessary for a robot to explore a site (dotted line gives the average value of \(\sigma ^{-1}\)) (Color figure online)

Figure 14a reports the probability mass function of the actual neighborhood size \(P(\mathcal {G})\) estimated from a single experimental run for each setting. When \(\mathcal {G}_{\mathrm{max}}=25\) (purple histograms, 652 samples), the average group size estimated using this mass function was 8.57, while it was 4.4 for \(\mathcal {G}_{\mathrm{max}}=5\) (green histograms, 682 samples). We have therefore a difference of almost a factor of two between the two averages. Concerning the exploration time, we have graphically shown in [48] that the probability density functions resulting from \(\mathcal {G}_{\mathrm{max}}=5\) (504 samples) and \(\mathcal {G}_{\mathrm{max}}=25\) (602 samples) were very similar (as one would expect). To further investigate this point, we performed a two-sample Kolmogorov–Smirnov test. The null hypothesis that the two samples come from a different distribution could not be rejected (p value \(=0.5364\)), which supports our original conclusion that data sets are consistent with each other. We therefore merged the two data sets to improve our estimate of the exploration time. Figure 14b shows the probability density function of the time \(\sigma ^{-1}\) (where \(\sigma \) is a rate, see Sect. 5) a robot spends to complete the exploration of a site. The average exploration time is 6.072 min (dotted line).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valentini, G., Ferrante, E., Hamann, H. et al. Collective decision with 100 Kilobots: speed versus accuracy in binary discrimination problems. Auton Agent Multi-Agent Syst 30, 553–580 (2016). https://doi.org/10.1007/s10458-015-9323-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-015-9323-3

Keywords

Navigation