Skip to main content
Log in

Biodegradation and detoxification of the triphenylmethane dye coomassie brilliant blue by the extracellular enzymes from mycelia of Lactarius deliciosus

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Fungi play an important role in dying wastewater treatment. In this work, the mycelia of Lactarius deliciosus exhibited an excellent capacity in decolorizing coomassie brilliant blue (CBB). The results demonstrated that the mycelia could treat CBB with high concentrations over a broad range of pH and temperature. The decolorization rate of 99.19% and the removal rate of 16.31 mg·L−1·h were realized. The mycelia could be recycled from decolorizing process for 19 times, indicating a good re-usability. It verified that the lignin peroxidase (121.65 U·L−1) and manganese peroxidase (36.77 U·L−1) were involved in the degradation and decolorization process of CBB. Toxicity assessments indicated the seed germination rate was up to 82.22% while inhibition to Escherichia coli decreased dramatically and no significant effect on Caenorhabditis elegans growth was found. The removal of CBB was a synergistic process accomplished by adsorption and biodegradation. The mycelia could be used for eco-friendly CBB treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mostafa A A, Elshikh M S, Al-Askar A A, Hadibarata T, Yuniarto A, Syafiuddin A. Decolorization and biotransformation pathway of textile dye by Cylindrocephalum aurelium. Bioprocess and Biosystems Engineering, 2019, 42(9): 1483–1494

    Article  CAS  PubMed  Google Scholar 

  2. Chakraborty S, Basak B, Dutta S, Bhunia B, Dey A. Decolorization and biodegradation of Congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Bioresource Technology, 2013, 147: 662–666

    Article  CAS  PubMed  Google Scholar 

  3. Hu MR, Chao Y P, Zhang G Q, Xue Z Q, Qian S. Laccase-mediator system in the decolorization of different types of recalcitrant dyes. Journal of Industrial Microbiology & Biotechnology, 2009, 36(1): 45–51

    Article  CAS  Google Scholar 

  4. Yang X, Zheng J, Lu Y, Jia R. Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus F17. Environmental Science and Pollution Research International, 2016, 23(10): 9585–9597

    Article  CAS  PubMed  Google Scholar 

  5. Chengalroyen M D, Dabbs E R. The microbial degradation of azo dyes: mini review. World Journal of Microbiology & Biotechnology, 2013, 29(3): 389–399

    Article  CAS  Google Scholar 

  6. Saratale R G, Saratale G D, Chang J S, Govindwar S P. Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(1): 138–157

    Article  CAS  Google Scholar 

  7. Wang N, Chu Y, Wu F, Zhao Z, Xu X. Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporia lacerata, from decayed mulberry branches. International Biodeterioration & Biodegradation, 2017, 117: 236–244

    Article  CAS  Google Scholar 

  8. Shabbir S, Faheem M, Wu Y. Decolorization of high concentration crystal violet by periphyton bioreactors and potential of effluent reuse for agricultural purposes. Journal of Cleaner Production, 2018, 170: 425–436

    Article  CAS  Google Scholar 

  9. Boonyakamol A, Imai T, Chairattanamanokorn P, Higuchi T, Sekine M. Key factors regarding decolorization of synthetic anthraquinone and azo dyes. Applied Biochemistry and Biotechnology, 2009, 158(1): 180–191

    Article  CAS  PubMed  Google Scholar 

  10. Mueangtoom K, Kittl R, Mann O, Haltrich D, Ludwig R. Low pH dye decolorization with ascomycete Lamprospora wrightii laccase. Biotechnology Journal, 2010, 5(8): 857–870

    Article  CAS  PubMed  Google Scholar 

  11. Przystaś W, Zabłocka-Godlewska E, Grabińska-Sota E. Biological removal of azo and triphenylmethane dyes and toxicity of process by-products. Water, Air, and Soil Pollution, 2012, 223(4): 1581–1592

    Article  PubMed  CAS  Google Scholar 

  12. Yang X, Wang J, Zhao X, Wang Q, Xue R. Increasing manganese peroxidase production and biodecolorization of triphenylmethane dyes by novel fungal consortium. Bioresource Technology, 2011, 102(22): 10535–10541

    Article  CAS  PubMed  Google Scholar 

  13. Kumar K V, Sivanesan S, Ramamurthi V. Adsorption of malachite green onto Pithophora sp., a fresh water algae: equilibrium and kinetic modelling. Process Biochemistry, 2005, 40(8): 2865–2872

    Article  CAS  Google Scholar 

  14. He H, Yang S, Yu K, Ju Y, Sun C, Wang L. Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions. Journal of Hazardous Materials, 2010, 173(1–3): 393–400

    Article  CAS  PubMed  Google Scholar 

  15. Ayed L, Mahdhi A, Cheref A, Bakhrouf A. Decolorization and degradation of azo dye methyl red by an isolated Sphingomonas paucimobilis: biotoxicity and metabolites characterization. Desalination, 2011, 274(1–3): 272–277

    Article  CAS  Google Scholar 

  16. Verma P, Madamwar D. Decolourization of synthetic dyes by a newly isolated strain of Serratia marcescens. World Journal of Microbiology & Biotechnology, 2003, 19(6): 615–618

    Article  CAS  Google Scholar 

  17. Ozdemir S, Cirik K, Akman D, Sahinkaya E, Cinar O. Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor. Bioresource Technology, 2013, 146: 135–143

    Article  CAS  PubMed  Google Scholar 

  18. He X, Song C, Li Y, Wang N, Xu L, Han X, Wei D. Efficient degradation of azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions. Ecotoxicology and Environmental Safety, 2018, 150: 232–239

    Article  CAS  PubMed  Google Scholar 

  19. Vajnhandl S, Le Marechal A M. Ultrasound in textile dyeing and the decolouration/mineralization of textile dyes. Dyes and Pigments, 2005, 65(2): 89–101

    Article  CAS  Google Scholar 

  20. Veisi H, Razeghi S, Mohammadi P, Hemmati S. Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4/SiO2-Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Materials Science & Engineering C—Materials for Biological Applications, 2019, 97: 624–631

    Article  CAS  Google Scholar 

  21. Bankole P O, Adekunle A A, Govindwar S P. Biodegradation of a monochlorotriazine dye, cibacron brilliant red 3B-A in solid state fermentation by wood-rot fungal consortium, Daldinia concentrica and Xylaria polymorpha co-biomass decolorization of cibacron brilliant red 3B-A dye. International Journal of Biological Macromolecules, 2018, 120(A): 19–27

    Article  CAS  PubMed  Google Scholar 

  22. Salami F, Habibi Z, Yousefi M, Mohammadi M. Covalent immobilization of laccase by one pot three component reaction and its application in the decolorization of textile dyes. International Journal of Biological Macromolecules, 2018, 120(A): 144–151

    Article  CAS  PubMed  Google Scholar 

  23. Muthukumaran C, Sivakumar V M, Thirumarimurugan M. Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63: 354–362

    Article  CAS  Google Scholar 

  24. Watharkar A D, Khandare R V, Kamble A A, Mulla A Y, Govindwar S P, Jadhav J P. Phytoremediation potential of Petunia grandiflora Juss., an ornamental plant to degrade a disperse, disulfonated triphenylmethane textile dye brilliant blue G. Environmental Science and Pollution Research International, 2013, 20(2): 939–949

    Article  CAS  PubMed  Google Scholar 

  25. Salleh M A M, Mahmoud D K, Karim W A W A, Idris A. Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination, 2011, 280(1–3): 1–13

    Article  CAS  Google Scholar 

  26. Gupta V K, Khamparia S, Tyagi I, Jaspal D, Malviya A. Decolorization of mixture of dyes: a critical review. Global Journal of Environmental Science and Management, 2015, 1(1): 71–94

    CAS  Google Scholar 

  27. Bharagava R N, Mani S, Mulla S I, Saratale G D. Degradation and decolourization potential of an ligninolytic enzyme producing Aeromonas hydrophila for crystal violet dye and its phytotoxicity evaluation. Ecotoxicology and Environmental Safety, 2018, 156: 166–175

    Article  CAS  PubMed  Google Scholar 

  28. van der Zee F P, Villaverde S. Combined anaerobic-aerobic treatment of azo dyes—a short review of bioreactor studies. Water Research, 2005, 39(8): 1425–1440

    Article  CAS  PubMed  Google Scholar 

  29. Anastasi A, Spina F, Romagnolo A, Tigini V, Prigione V, Varese G C. Integrated fungal biomass and activated sludge treatment for textile wastewaters bioremediation. Bioresource Technology, 2012, 123: 106–111

    Article  CAS  PubMed  Google Scholar 

  30. Zerva A, Zervakis G I, Christakopoulos P, Topakas E. Degradation of olive mill wastewater by the induced extracellular ligninolytic enzymes of two wood-rot fungi. Journal of Environmental Management, 2017, 203: 791–798

    Article  CAS  PubMed  Google Scholar 

  31. Rajesh R, Iyer S S, Ezhilan J, Kumar S S, Venkatesan R. Graphene oxide supported copper oxide nanoneedles: an efficient hybrid material for removal of toxic azo dyes. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2016, 166: 49–55

    Article  CAS  Google Scholar 

  32. Saratale R G, Gandhi S S, Purankar M V, Kurade M B, Govindwar S P, Oh S E, Saratale G D. Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS. Journal of Bioscience and Bioengineering, 2013, 115(6): 658–667

    Article  CAS  PubMed  Google Scholar 

  33. Ramsay J A, Mok W H W, Luu Y S, Savage M. Decoloration of textile dyes by alginate-immobilized Trametes versicolor. Chemo-sphere, 2005, 61(7): 956–964

    Article  CAS  Google Scholar 

  34. Munck C, Thierry E, Gräßle S, Chen S H, Ting A S Y. Biofilm formation of filamentous fungi Coriolopsis sp. ion simple muslin cloth to enhance removal of triphenylmethane dyes. Journal of Environmental Management, 2018, 214: 261–266

    Article  CAS  PubMed  Google Scholar 

  35. Paz A, Carballo J, Pérez M J, Domínguez J M. Biological treatment of model dyes and textile wastewaters. Chemosphere, 2017, 181: 168–177

    Article  CAS  PubMed  Google Scholar 

  36. Janović B S, Mićić Vićovac M L, Vujčić ZM, Vujčić M T. Tailor-made biocatalysts based on scarcely studied acidic horseradish peroxidase for biodegradation of reactive dyes. Environmental Science and Pollution Research International, 2017, 24(4): 3923–3933

    Article  PubMed  CAS  Google Scholar 

  37. Kulkarni A N, Watharkar A D, Rane N R, Jeon B, Govindwar S P. Decolorization and detoxification of dye mixture and textile effluent by lichen Dermatocarpon vellereceum in fixed bed upflow bioreactor with subsequent oxidative stress study. Ecotoxicology and Environmental Safety, 2018, 148: 17–25

    Article  CAS  PubMed  Google Scholar 

  38. Pandey R K, Tewari S, Tewari L. Lignolytic mushroom Lenzites elegans WDP2: laccase production, characterization, and bioremediation of synthetic dyes. Ecotoxicology and Environmental Safety, 2018, 158: 50–58

    Article  CAS  PubMed  Google Scholar 

  39. Zhao W, Wei Z, Zhang L, Wu X, Wang X. Cr doped SnS2 nanoflowers: preparation, characterization and photocatalytic decolorization. Materials Science in Semiconductor Processing, 2018, 88: 173–180

    Article  CAS  Google Scholar 

  40. Shabbir S, Faheem M, Ali N, Kerr P G, Wu Y. Periphyton biofilms: a novel and natural biological system for the effective removal of sulphonated azo dye methyl orange by synergistic mechanism. Chemosphere, 2017, 167: 236–246

    Article  CAS  PubMed  Google Scholar 

  41. Agrawal A, Chakraborty S. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresource Technology, 2013, 128: 72–80

    Article  CAS  PubMed  Google Scholar 

  42. Legerska B, Chmelova D, Ondrejovic M. Decolourization and detoxification of monoazo dyes by laccase from the white-rot fungus Trametes versicolor. Journal of Biotechnology, 2018, 285: 84–90

    Article  CAS  PubMed  Google Scholar 

  43. Kumar R, Negi S, Sharma P, Prasher I B, Chaudhary S, Dhau J S, Umar A. Wastewater cleanup using Phlebia acerina fungi: an insight into mycoremediation. Journal of Environmental Management, 2018, 228: 130–139

    Article  CAS  PubMed  Google Scholar 

  44. Wang M, Zhang Q, Yao S. A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater. Chemical Engineering Journal, 2015, 259: 837–844

    Article  CAS  Google Scholar 

  45. Daâssi D, Mechichi T, Nasri M, Rodriguez-Couto S. Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi. Journal of Environmental Management, 2013, 129: 324–332

    Article  PubMed  CAS  Google Scholar 

  46. Vitor V, Corso C R. Decolorization of textile dye by Candida albicans isolated from industrial effluents. Journal of Industrial Microbiology & Biotechnology, 2008, 35(11): 1353–1357

    Article  CAS  Google Scholar 

  47. Shabbir S, Faheem M, Ali N, Kerr P G, Wu Y. Evaluating role of immobilized periphyton in bioremediation of azo dye amaranth. Bioresource Technology, 2017, 225: 395–401

    Article  CAS  PubMed  Google Scholar 

  48. Dos Santos A B, Bisschops I A E, Cervantes F J, van Lier J B. Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30 °C) and thermophilic (55 °C) treatments for decolourisation of textile wastewaters. Chemosphere, 2004, 55(9): 1149–1157

    Article  CAS  PubMed  Google Scholar 

  49. Bedekar P A, Saratale R G, Saratale G D, Govindwar S P. Oxidative stress response in dye degrading bacterium Lysinibacillus sp. RGS exposed to reactive orange 16, degradation of RO16 and evaluation of toxicity. Environmental Science and Pollution Research International, 2014, 21(18): 11075–11085

    Article  CAS  PubMed  Google Scholar 

  50. Xu J Z, Zhang J L, Hu K H, Zhang W G. The relationship between lignin peroxidase and manganese peroxidase production capacities and cultivation periods of mushrooms. Microbial Biotechnology, 2013, 6(3SI): 241–247

    Article  PubMed  CAS  Google Scholar 

  51. Chen S H, Yien Ting A S. Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample. International Biodeterioration & Biodegradation, 2015, 103: 1–7

    Article  CAS  Google Scholar 

  52. Chen H, Guo S, Li H, Zhou D, Cao X, Wang C, Liu Y, Xiang M, Li L, Yu Y. Multi-generational effects and variations of stress response by hexabromocyclododecane (HBCD) exposure in the nematode Caenorhabditis elegans. Journal of Environmental Management, 2019, 245: 216–222

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Anhui Provincial Program on Key Research and Development Project (Grant No. 202004a06020021), the National Natural Science Foundation of China (Grant No. 21606002), the Natural Science Foundation of Anhui Province (CN) (Grant No. 1708085QC64) and the Undergraduate Research Training Programs for Innovation (Grant Nos. 201910357069, S201910357427).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Xi Wu or Yan Chen.

Electronic Supplementary Material

11705_2020_1952_MOESM1_ESM.pdf

Biodegradation and detoxification of the triphenylmethane dye coomassie brilliant blue by the extracellular enzymes from mycelia of Lactarius deliciosus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Wu, QX., Cheng, XD. et al. Biodegradation and detoxification of the triphenylmethane dye coomassie brilliant blue by the extracellular enzymes from mycelia of Lactarius deliciosus. Front. Chem. Sci. Eng. 15, 421–436 (2021). https://doi.org/10.1007/s11705-020-1952-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1952-7

Keywords

Navigation