Skip to main content
Log in

Tailor-made biocatalysts based on scarcely studied acidic horseradish peroxidase for biodegradation of reactive dyes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Peroxidases (EC 1.11.1.7) have enormous biotechnological applications. Usage of more abundant, basic isoforms of peroxidases in diagnostic kits and/or in immunochemistry has led to under exploitation and disregard of horseradish peroxidase (HRP) acidic isoforms. Therefore, acidic horseradish peroxidase (HRP-A) isoenzyme was used for the preparation of a biocatalyst with improved ability in dye decolorization. Ten biocatalysts were prepared by covalent binding of enzyme to chitosan and alginate, adsorption followed by cross-linking on inorganic support (aluminum oxide), and encapsulation in spherical calcium alginate beads via polyethylene glycol. Model dyes of 50 to 175 mg l−1 were removed by the biocatalysts. Among the tested biocatalysts, the three with the highest specific activity and biodegradation rate were further studied (Chitosan-HRP, Al-Gel-HRP and Al-HRP-Gel). The impact of hydrogen peroxide concentration on dye decolorization was examined on the Chitosan-HRP biocatalyst, since the HRP is susceptible to inhibition/inactivation by high H2O2. On the other hand, H2O2 is needed as a co-substrate for the HRP, and the H2O2/dye ratio can greatly influence decolorization efficiency. Concentrations of H2O2 ranging from 0.22 to 4.4 mM showed no difference in terms of impact on the biocatalyst decolorization efficiency. The high decolorization efficiency of the biocatalysts was validated by the removal of 25 and 100 mg l−1 anthraquinone (Remazol Brilliant Blue R (RBBR)), triphenylmethane (Coomassie Brilliant Blue (CBB)), acridine (Acridine Orange (AO)), and formazan metal complex dye (Reactive Blue 52 (RB52)). After the seven consecutive decolorization cycles, the decolorization was still 53, 78, and 67% of the initial dye for the Al-HRP-Gel, Al-Gel-HRP, and Chitosan-HRP immobilizate, respectively. The results obtained showed potential of otherwise neglected acidic HRP isoforms as a cost-effective biocatalyst with significant potential in wastewater dyestuff treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alemzadeh I, Nejati S (2009) Phenols removal by immobilized horseradish peroxidase. J Hazard Mater 166:1082–1086. doi:10.1016/j.jhazmat.2008.12.026

    Article  CAS  Google Scholar 

  • Ali H (2010) Biodegradation of synthetic dyes—a review. Water Air Soil Pollut 2013:251–273. doi:10.1007/s11270-010-0382-4

  • Ali L, Algaithi R, Habib HM et al (2013) Soybean peroxidase-mediated degradation of an azo dye—a detailed mechanistic study. BMC Biochem 14:35. doi:10.1186/1471-2091-14-35

    Article  Google Scholar 

  • Arslan M (2011) Immobilization horseradish peroxidase on amine-functionalized glycidyl methacrylate-g-poly(ethylene terephthalate) fibers for use in azo dye decolorization. Polym Bull 66:865–879. doi:10.1007/s00289-010-0316-8

    Article  CAS  Google Scholar 

  • Balakrishnan B, Lesieur S, Labarre D, Jayakrishnan A (2005) Periodate oxidation of sodium alginate in water and in ethanol-water mixture: a comparative study. Carbohydr Res 340:1425–1429. doi:10.1016/j.carres.2005.02.028

    Article  CAS  Google Scholar 

  • Baynton KJ, Bewtra JK, Biswas N, Taylor KE (1994) Inactivation of horseradish peroxidase by phenol and hydrogen peroxide: a kinetic investigation. Biochim Biophys Acta 1206:272–278. doi:10.1016/0167-4838(94)90218-6

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Celebi M, Kaya MA, Altikatoglu M (2013) Enzymatic decolorization of anthraquinone and diazo dyes using horseradish peroxidase enzyme immobilized onto various polysulfone supports. Appl Biochem Biotechnol 171:716–730. doi:10.1007/s12010-013-0377-x

    Article  CAS  Google Scholar 

  • Chairin T, Nitheranont T, Watanabe A et al (2013) Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona. Appl Biochem Biotechnol 169:539–545. doi:10.1007/s12010-012-9990-3

    Article  CAS  Google Scholar 

  • Cheng J, Ming Yu S, Zuo P (2006) Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Res 40:283–290. doi:10.1016/j.watres.2005.11.017

    Article  CAS  Google Scholar 

  • Eryomin AN, Makarenko MV, Budnikova LP (2005) Polymerization of horseradish peroxidase in the presence of inorganic adsorbents. Appl Biochem Microbiol 41:383–391. doi:10.1007/s10438-005-0057-x

    Article  Google Scholar 

  • Eş I, Vieira JDG, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99:2065–2082. doi:10.1007/s00253-015-6390-y

    Article  Google Scholar 

  • Gómez JL, Bódalo A, Gómez E et al (2006) Immobilization of peroxidases on glass beads: an improved alternative for phenol removal. Enzym Microb Technol 39:1016–1022. doi:10.1016/j.enzmictec.2006.02.008

    Article  Google Scholar 

  • Gomez CG, Rinaudo M, Villar MA (2007) Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydr Polym 67:296–304. doi:10.1016/j.carbpol.2006.05.025

    Article  CAS  Google Scholar 

  • Hiner ANP, Hernandez-Ruiz J, Rodriguez-Lopez JN et al (2001) The inactivation of horseradish peroxidase isoenzyme A2 by hydrogen peroxide: an example of partial resistance due to the formation of a stable enzyme intermediate. JBIC, J Biol Inorg Chem 6:504–516. doi:10.1007/s007750100219

    Article  CAS  Google Scholar 

  • Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 9:117–140. doi:10.1007/s11157-009-9184-9

    Article  CAS  Google Scholar 

  • Husain S, Jafri F, Saleemuddin M (1996) Immobilization and stabilization of horseradish peroxidase isoforms. Biochem Mol Biol Int 40:1–11

    CAS  Google Scholar 

  • Jamal F (2011) Functional suitability of soluble peroxidases from easily available plant sources in decolorization of synthetic dyes. In: Hauser P (ed) Advances in Treating Textile Effluent, InTech, pp 49–72

  • Karim Z, Adnan R, Husain Q (2012) A β-cyclodextrin-chitosan complex as the immobilization matrix for horseradish peroxidase and its application for the removal of azo dyes from textile effluent. Int Biodeterior Biodegrad 72:10–17. doi:10.1016/j.ibiod.2012.04.008

    Article  CAS  Google Scholar 

  • Koyama K, Seki M (2004) Cultivation of yeast and plant cells entrapped in the low-viscous liquid-core of an alginate membrane capsule prepared using polyethylene glycol. J Biosci Bioeng 97:111–118. doi:10.1263/jbb.97.111

    Article  CAS  Google Scholar 

  • Krainer FW, Glieder A (2015) An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Appl Microbiol Biotechnol 99:1611–1625. doi:10.1007/s00253-014-6346-7

    Article  CAS  Google Scholar 

  • Kumar V, Misra N, Goel K, Thakar R (2015) A horseradish peroxidase immobilized radiation grafted polymer matrix : a biocatalytic system for dye waste water treatment. RSC Adv 6:2974–2981. doi:10.1039/C5RA20513A

    Article  Google Scholar 

  • Li F, Ding C (2011) Adsorption of Reactive Black M- 2 R on Different Deacetylation Degree Chitosan. J Eng Fiber Fabr 6:25–31

  • Lončar N, Božić N, Andelković I et al (2011) Removal of aqueous phenol and phenol derivatives by immobilized potato polyphenol oxidase. J Serbian Chem Soc 76:513–522. doi:10.2298/JSC100619046L

    Article  Google Scholar 

  • Marchis T, Avetta P, Bianco-prevot A et al (2011) Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase. J Inorg Biochem 105:321–327. doi:10.1016/j.jinorgbio.2010.11.009

    Article  CAS  Google Scholar 

  • Mateo C, Palomo JM, Fernandez-Lorente G et al (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40:1451–1463. doi:10.1016/j.enzmictec.2007.01.018

    Article  CAS  Google Scholar 

  • Milovanović A, Božić N, Vujčić Z (2007) Cell wall invertase immobilization within calcium alginate beads. Food Chem 104:81–86. doi:10.1016/j.foodchem.2006.11.001

    Article  Google Scholar 

  • Mohan SV, Prasad KK, Rao NC, Sarma PN (2005) Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere 58:1097–1105. doi:10.1016/j.chemosphere.2004.09.070

    Article  CAS  Google Scholar 

  • Munjal N, Sawhney SK (2002) Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels. Enzym Microb Technol 30:613–619. doi:10.1016/S0141-0229(02)00019-4

    Article  CAS  Google Scholar 

  • Nitheranont T, Watanabe A, Suzuki T et al (2011) Decolorization of synthetic dyes and biodegradation of bisphenol A by laccase from the edible mushroom, Grifola frondosa. Biosci Biotechnol Biochem 75:1845–1847. doi:10.1271/bbb.110329

    Article  CAS  Google Scholar 

  • Pramparo L, Stüber F, Font J et al (2010) Immobilisation of horseradish peroxidase on Eupergit®C for the enzymatic elimination of phenol. J Hazard Mater 177:990–1000. doi:10.1016/j.jhazmat.2010.01.017

    Article  CAS  Google Scholar 

  • Regalado C, García-Almendárez BE, Duarte-Vázquez MA (2004) Biotechnological applications of peroxidases. Phytochem Rev 3:243–256

    Article  CAS  Google Scholar 

  • Šekuljica N, Prlainović N, Jovanović JR et al (2016) Immobilization of horseradish peroxidase onto kaolin. Bioprocess Biosyst Eng 39:461–472. doi:10.1007/s00449-015-1529-x

    Article  Google Scholar 

  • Shaffiqu TS, Roy J, Nair RA, Abraham TE (2002) Degradation of textile dyes mediated by plant peroxidases. Appl Biochem Biotechnol 102–103:315–326

    Article  Google Scholar 

  • Shakeri M, Shoda M (2007) Change in turnover capacity of crude recombinant dye-decolorizing peroxidase (rDyP) in batch and fed-batch decolorization of Remazol Brilliant Blue R. Appl Microbiol Biotechnol 76:919–926. doi:10.1007/s00253-007-1042-5

    Article  CAS  Google Scholar 

  • Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307. doi:10.1002/adsc.200700082

    Article  CAS  Google Scholar 

  • Shukla SP, Modi K, Ghosh PK, Devi S (2004) Immobilization of horseradish peroxidase by entrapment in natural polysaccharide. J Appl Polym Sci 91:2063–2071. doi:10.1002/app.13269

    Article  CAS  Google Scholar 

  • Soares CMF, dos Santos OA, de Castro HF et al (2006) Characterization of sol-gel encapsulated lipase using tetraethoxysilane as precursor. J Mol Catal B Enzym 39:69–76. doi:10.1016/j.molcatb.2006.01.005

    Article  CAS  Google Scholar 

  • Uzun I (2006) Kinetics of the adsorption of reactive dyes by chitosan. Dyes Pigments 70:76–83. doi:10.1016/j.dyepig.2005.04.016

    Article  CAS  Google Scholar 

  • Valderrama B, Ayala M, Vazquez-Duhalt R (2002) Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem Biol 9:555–565

    Article  CAS  Google Scholar 

  • Vujcic Z, Janovic B, Loncar N et al (2014) Exploitation of neglected horseradish peroxidase izoenzymes for dye decolorization. Int Biodeterior Biodegradation 97:124–127. doi:10.1016/j.biod.2014.10.007

    Article  Google Scholar 

  • Wang P, Fan X, Cui L et al (2008) Decolorization of reactive dyes by laccase immobilized in alginate/gelatin blent with PEG. J Environ Sci 20:1519–1522. doi:10.1016/S1001-0742(08)62559-0

    Article  CAS  Google Scholar 

  • Zaharia C, Suteu D (2012) Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview. In: Puzyn T (ed) Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update, InTech, pp 55–86. doi:10.5772/32373

  • Zille A, Tzanov T, Gübitz GM, Cavaco-Paulo A (2003) Immobilized laccase for decolourization of reactive Black 5 dyeing effluent. Biotechnol Lett 25:1473–1477. doi:10.1023/A:1025032323517

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Serbian Ministry of Education, Science, and Technological Development (Grant No. 172048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara S. Janović.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janović, B.S., Mićić Vićovac, M.L., Vujčić, Z.M. et al. Tailor-made biocatalysts based on scarcely studied acidic horseradish peroxidase for biodegradation of reactive dyes. Environ Sci Pollut Res 24, 3923–3933 (2017). https://doi.org/10.1007/s11356-016-8100-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8100-4

Keywords

Navigation