Skip to main content
Log in

Extracellular Enzymatic Activities of Bacterial Strains Isolated from Tunisian Biotopes: Decolorization and Detoxification of Indigo Carmine

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Eleven bacterial strains, isolated from various Tunisian biotopes, were characterized for their lignin degradation activities and were screened for Indigo Carmine (IC) decolorization for the first time. Results revealed that these isolated strains were able to decolorize IC. Based on this property, the newly isolates crude filtrates (NICF) showed that eight ones prove the effectiveness for IC degradation (100 mg). More than 80% of IC could be decolorized within 12 h under non-optimised conditions. The UV–Visible absorption spectra and FT-IR analysis of the degradation products showed an IC decolorization and/or transformation, proving the enzyme’s role in dye decolorization. Furthermore, the phytotoxicity and the cytotoxicity using Vero and erythrocyte cells were performed to evaluate the acute toxicity of the treated and untreated dye. The results showed that some NICF can decrease and sometimes detoxify IC. In fact, NICF decolorize the toxic IC into non-toxic products. These NICF, acting as powerful tools, could be effectively used to decolorize and to bioremediate rich-dye-textile effluents and found worthy of investigation for potential applications in restoration work and other biotechnological uses.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ben Younes S, Sayadi S (2013) J Mol Catal B 87:62–68

    Article  CAS  Google Scholar 

  2. Saggioro EM, Oliveira AS, Costa Moreira J (2016) Text Wastewater Treat. https://doi.org/10.5772/63790

    Article  Google Scholar 

  3. Bentouami A, Ouali MS, De Menorval LC (2010) J Photochem Photobiol A 212:101–106

    Article  CAS  Google Scholar 

  4. Ben Younes S, Karray F, Sayadi S (2011) Int Biodeterior Biodegr 65:1104–1109

    Article  CAS  Google Scholar 

  5. Ben Younes S, Bouallagui Z, Gargoubi A, Sayadi S (2011) Eur Food Res Technol 233:751–758

    Article  Google Scholar 

  6. Franciscon E, Zille A, Dias GF, Ragagnin de Menezes C, Durrant LR, Cavaco-Paulo A (2009) Int Biodeterior Biodegr 63:280–288

    Article  Google Scholar 

  7. Fernanda M, Munari A, Tamara A, Gaio A, Raquel Calloni A, Dillon JP (2008) World J Microb Biot 24:1383–1392

    Article  Google Scholar 

  8. Chauhan PS, Goradia B, Saxena A (2017) 3 Biotech 7:323–342

    Article  Google Scholar 

  9. Kiiskinen LL, Ratto M, Kruus K (2004) J Appl Microbiol 97:640–646

    Article  CAS  Google Scholar 

  10. Hajji M, Kanoun S, Nasri M, Gharsallah N (2007) Process Biochem 42:791–797

    Article  CAS  Google Scholar 

  11. Lim G, Khew E, Yeoh HH (1985) Mircen J 1:55–61

    Article  CAS  Google Scholar 

  12. Teather RM, Wood PJ (1982) Appl Environ Microbiol 43:777–780

    Article  CAS  Google Scholar 

  13. Deivasigamani C, Das N (2011) Biodegradation 22:1169–1180

    Article  CAS  Google Scholar 

  14. Saratale RG, Saratale GD, Chang JS, Govindwar SP (2009) J Hazard Mater 166:1421–1428

    Article  CAS  Google Scholar 

  15. Sun Y, Wang W, Zheng F, Zhang S, Wang F, Liu S (2020) Chemosphere 251:126432–126439

    Article  CAS  Google Scholar 

  16. Catunda RQ, Vieira JRC, De Oliveira EB, Da Silva EC, Brasil VLM, Perez DEC (2017) J Clin Exp Dent 9:61–66

    Google Scholar 

  17. Ahrari F, Afshari JT, Poosti M, Brook A (2010) Eur J Orthod 32:688–692

    Article  Google Scholar 

  18. Li G, Liu Z (2008) Food Chem Toxicol 46:886–892

    Article  CAS  Google Scholar 

  19. Alimi H, Hfaeidh N, Bouoni Z, Sakly M, Ben Rhouma K (2012) Alcohol 46:235–243

    Article  CAS  Google Scholar 

  20. Thurston CF (1994) Microbiology 140:19–26

    Article  CAS  Google Scholar 

  21. Niladevi KN, Prema P (2008) Biores Technol 99:4583–4589

    Article  CAS  Google Scholar 

  22. Givaudan A, Effose A, Faure D, Potier P, Bouillant ML, Bally R (1993) FEMS Microbiol Lett 108:205–210

    Article  CAS  Google Scholar 

  23. Solano F, Garcia E, Perez De Egea E, Sanchez-Amat A (1997) Appl Environ Microbiol 63:3499–3506

    Article  CAS  Google Scholar 

  24. Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO (2002) J Biol Chem 277:18849–18859

    Article  CAS  Google Scholar 

  25. Navada KK, Sanjeev G, Kulal A (2018) Int Biodeterior Biodegrad 132:241. https://doi.org/10.1016/j.ibiod.2018.04.012

    Article  CAS  Google Scholar 

  26. Chauhan PS (2020) Biocatal Agric Biotechnol 23:101498–101517

    Article  Google Scholar 

  27. Howard RL, Masoko P, Abotsi E (2003) Afr J Biotechnol 2:296–300

    Article  CAS  Google Scholar 

  28. Ben Mansour H, Boughzala O, Dridi D, Barillier D, Chekir-Ghedira L, Mosrati R (2011) J Water Sci 24:1–31

    Google Scholar 

  29. Ben Younes S, Cherif I, Dhouib A, Sayadi S (2016) Catal Lett 146:204–211

    Article  CAS  Google Scholar 

  30. Ben Younes S, Bouallagui Z, Sayadi S (2012) J Mol Catal B 79:41–48

    Article  CAS  Google Scholar 

  31. Ortiz E, Gómez-Chávez V, Cortés-Romero CM, Solís H, Ruiz-Ramos R, Loera-Serna S (2016) J Environ Prot 7:1693–1706

    Article  CAS  Google Scholar 

  32. Parshetti G, Kalme S, Saratale G, Govindwar S (2006) Acta Chim Slov 53:492–498

    CAS  Google Scholar 

  33. Acemioglu B (2004) J Colloid Interface Sci 274:371–379

    Article  CAS  Google Scholar 

  34. Yamaki J, Takatsuji H, Kawamura T, Egashira M (2002) Solid State Ion 148:241–245

    Article  CAS  Google Scholar 

  35. Wesenberg D, Spiros IK, Agathos N (2003) Biotechnol Adv 22:161–187

    Article  CAS  Google Scholar 

  36. Côme D, Corbineau F (1998) Semences et germination. In "Croissance et développement. Physiologie végétale II". Hermann, Paris, pp 185–313

    Google Scholar 

  37. Guaraldo TT, Zanoni TB, de Torresi SI, Gonçales VR, Zocolo GJ, Oliveira DP, Zanoni MV (2013) Chemosphere 91:586–593

    Article  CAS  Google Scholar 

  38. Muñoz S, Sebastián JL, Sancho M, Martínez G (2010) Bioelectrochemistry 77:158–161

    Article  Google Scholar 

  39. Agrawal D, Sultana P, Gupta GSD (1991) Food Chem Toxicol 29:459–462

    Article  CAS  Google Scholar 

  40. Agrawal D, Sultana P (1993) Food Chem Toxicol 31:443–448

    Article  CAS  Google Scholar 

  41. Weed RI, Bowdler AJ (1966) J Clin Invest 45:1137–1142

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonia Ben Younes or Sami Sayadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Younes, S., Dallali, C., Ellafi, A. et al. Extracellular Enzymatic Activities of Bacterial Strains Isolated from Tunisian Biotopes: Decolorization and Detoxification of Indigo Carmine. Catal Lett 151, 1248–1261 (2021). https://doi.org/10.1007/s10562-020-03405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03405-7

Keywords

Navigation