Skip to main content
Log in

Comparison of the gaseous benzene adsorption capacity by activated carbons from Fraxinus excelsior L. as a lignocellulosic residual

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Benzene vapor is notoriously known to induce adverse human health, which plays a definite role in the deformation of cells. Various advanced adsorbents from lignocellulosic precursors have emerged as cheaper alternatives to the green process for the adsorption of gaseous benzene. In this paper, the prominence mainly benzene vapor removal with lignin-based adsorbent in the adsorption technology has investigated the textural, morphology, and chemical characteristics of activated carbon synthesized from Fraxinus excelsior L. seeds, a lignocellulosic biomass waste. Chemically starting HCl and KOH in the N2 atmosphere was adopted, contributing to the porous carbon material's well-developed porosity and surface chemistry. Also, carbonaceous materials were investigated by Brunauer–Emmet–Teller (BET), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and X-ray diffraction. Herein, the optimum way for producing activated carbon was recognized to be: activation temperature of 800 and 700 °C in line with an impregnation weight ratio of samples to HCl 1:2 and KOH 1:3 for 2 h activation time as FE7AC and FE22AC, which have resulted in 676 m2/g and 0.39 cm3/g; 734 m2/g and 0.48 cm3/g of BET surface area and total pore volume, respectively. The SEM observations exhibited advanced high porosity development formed by oxidation–reduction reaction, while FTIR confirmed the presence of various surface functional groups. Moreover, benzene became more tremendously facile for four ambient temperatures (20, 25, 30, and 35 °C) and until 200 min contact time. The tremendous values varied from 96 to 224 mg/g and 122 to 286 mg/g depending on lignin-based adsorbent amounts as 0.5 or 1 g and an initial benzene concentration of 100 mg/m3 by using FE7AC and FE22AC. The main innovation of this paper is exciting to assist recent paths for optimizing air filtration procedures under actual environmental circumstances, particularly regarding its compatibility with the benzene molecular structure of FE22AC. The paper concludes that the performance of the FE22AC can be enhanced via improvements in its surface properties for a wide array of actual benzene concentrations from gaseous applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

This study was entirely prepared by KI.

Corresponding author

Correspondence to Kaan Isinkaralar.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isinkaralar, K. Comparison of the gaseous benzene adsorption capacity by activated carbons from Fraxinus excelsior L. as a lignocellulosic residual. Chem. Pap. 77, 6111–6124 (2023). https://doi.org/10.1007/s11696-023-02925-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-02925-x

Keywords

Navigation