Skip to main content

Advertisement

Log in

Adsorption of toluene and toluene–water vapor mixture on almond shell based activated carbons

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The aim of work is to study the adsorption of a common volatile organic compound such as toluene using activated carbons prepared by chemical activation with phosphoric acid of a lignocellulosic precursor, almond shell, under different conditions. The Impregnation ratio, temperature and time of activation were modified to obtain activated carbons with different characteristics. Regarding the characteristics of the activated carbons, the effects of porous structure and surface chemistry on the toluene adsorption capacity from toluene isotherms have been analysed. Results show that the control of properties of the activated carbons, particularly porous structure, highly dependent on the preparation conditions, plays a decisive role on the toluene adsorption capacity of the activated carbons. Concerning the experiments of toluene adsorption conducted in dynamic mode, activated carbons prepared at low temperatures of activation show higher breakthrough times than those obtained for activated carbons prepared at higher activation temperatures. The amount of toluene adsorbed in presence of water vapor in the gas stream lead to a decrease ranging from 33 to 46 % except for carbons prepared at higher temperatures activated that show only a slight decrease in the amount of toluene adsorbed. Activated carbons can be regenerated with soft heat treatment showing a slight decrease in the adsorption capacity. The high toluene adsorption capacities as well as the high breakthrough times obtained in presence of water vapor make these activated carbons suitable for commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alcañiz-Monge, J., Linares-Solano, A., Rand, B.: Water adsorption on activated carbons: study of water adsorption in micro- and mesopores. J. Phys. Chem. B 105, 7998–8006 (2001)

    Article  Google Scholar 

  • Alcañiz-Monge, J., Linares-Solano, A., Rand, B.: Mechanism of adsorption of water in carbon micropores as revealed by a study of activated carbon fiber. J. Phys. Chem. B 106, 3209–3216 (2002)

    Article  Google Scholar 

  • Antal, M.J., Varhegyi, G.: Cellulose pyrolysis kinetics: the current state of knowledge. Ind. Eng. Chem. Res. 34, 703–717 (1995)

    Article  CAS  Google Scholar 

  • Babić, B.M., Milonjić, S.K., Polovina, M.J., Kaludierović, B.V.: Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon 37, 477–481 (1999)

    Article  Google Scholar 

  • Balci, S., Doğu, T., Yücel, G.: Pyrolysis of lignocellulosic materials. Ind. Chem. Res. 32, 2573–2579 (1993)

    Article  CAS  Google Scholar 

  • Bandosz, T.J., Jagiello, J., Contescu, C., Schwarz, J.A.: Characterization of the surfaces of activated carbons in terms of their acidity constant distribution. Carbon 31(7), 1193–1202 (1993)

    Article  CAS  Google Scholar 

  • Benkheda, J., Jaubert, J.N., Barth, D.: Experimental and modelled results describing the adsorption of toluene onto activated carbon. J. Chem. Eng. Data 45, 653–661 (2000)

    Article  Google Scholar 

  • Boehm, H.P., Heck, W., Sappok, R., Diehl, E.: Surface oxides of carbon. Angew. Chem. Int. Ed. 3(10), 669 (1964)

    Article  Google Scholar 

  • Boehm, H.P.: Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759–769 (1994)

    Article  CAS  Google Scholar 

  • Bouhamra, W.S., Baker, C.G.J., Elkilani, A.S., Alkandari, A.A., Al-Masour, A.A.A.: Adsorption of toluene and 1,1,1-trichloroethane on selected adsorbents under a range of ambient conditions. Adsorption 15, 461–475 (2009)

    Article  CAS  Google Scholar 

  • Brennan, J.K., Bandosz, T.J., Thomson, K.T., Gubbins, K.E.: Water in porous carbons. Colloid Surf. A Physicochem. Eng. Aspects 187, 539–568 (2001)

    Article  Google Scholar 

  • Caballero, J.A., Conesa, J.A., Font, R., Marcilla, A.: Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J. Anal. Appl. Pyrolysis 42, 159–175 (1997)

    Article  CAS  Google Scholar 

  • Cal, M.P., Rood, M.J., Larson, S.M.: Removal of VOCs from humidified gas stream using activated carbon cloth. Gas Sep. Purif. 10(2), 117–121 (1996)

    Article  CAS  Google Scholar 

  • Carrott, P.J.M., Ribeiro Carrott, M.M.L., Estevão Candelas, A.J., Prates Ramalho, J.P.: Numerical simulation of surface ionisation and specific adsorption in a two-site model of a carbon surface. J. Chem. Soc. Faraday Trans. 91(14), 2179–2184 (1995)

    Article  CAS  Google Scholar 

  • Cossarutto, L., Zimny, T., Kaczmarczyk, J., Siemieniewska, T., Bimer, J., Weber, J.V.: Transport and sorption of water vapour in activated carbons. Carbon 30, 2339–2346 (2001)

    Article  Google Scholar 

  • Corcho-Corral, B., Olivares-Marín, M., Fernández-González, C., Gómez-Serrano, V., Macías-García, A.: Preparation and textural characterization of activated carbon from vine shoots (Vitis vinifera) by H3PO4-chemical activation. Appl. Surf. Sci. 252, 5961–5966 (2006)

    Article  CAS  Google Scholar 

  • Daifullah, A.M.M., Girgis, B.B.: Impact of surfaces characteristics of activated carbon on adsorption of BTEX. Colloids Surf. A Physicochem. Eng. Aspects 214, 181–193 (2003)

    Article  CAS  Google Scholar 

  • Do, D.D., Do, H.D.: A model for water adsorption in activated carbon. Carbon 38(5), 767–773 (2000)

    Article  CAS  Google Scholar 

  • Dubinin, M.M.: Water vapour adsorption and the microporous structures of carbonaceous adsorbents. Carbon 18, 355–364 (1980)

    Article  CAS  Google Scholar 

  • Dubinin, M.M., Serpinsky, V.V.: Isotherm equation for water vapour adsorption by microporous carbonaceous adsorbents. Carbon 19(5), 402–403 (1981)

    Article  CAS  Google Scholar 

  • Dubinin, M.M.: Fundamentals of the theory of adsorption in micropores of carbon adsorbents—characteristics of their adsorption properties and microporous structure. Carbon 27, 457–467 (1989)

    Article  CAS  Google Scholar 

  • Figueiredo, J.L., Pereira, M.F.R., Freitas, M.M.A., Órfão, J.J.M.: Modification of the surface chemistry of activated carbons. Carbon 37, 1379–1389 (1999)

    Article  CAS  Google Scholar 

  • Font, R., Marcilla, A., Verdú, E., Devesa, J.: Thermogravimetric kinetic study of the pyrolysis of almond shells and almond shells impregnated with CoCl2. J. Anal. Appl. Pyrolysis 21, 249–264 (1991)

    Article  CAS  Google Scholar 

  • Girgis, B.B., Hendawy, A.A.N.: Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous Mesoporous Mater. 52, 105–117 (2002)

    Article  CAS  Google Scholar 

  • González, J.F., Román, S., Encinar, J.M., Martínez, G.: Pyrolysis of various biomass residues and char utilization for the production of activated carbons. J. Anal. Appl. Pyrolysis 85, 134–141 (2009)

    Article  Google Scholar 

  • Izquierdo, M.T., Martínez de Yuso, A., Rubio, B., Pino, M.R.: Conversion of almond shell to activated carbons: methodical study of the chemical activation based on an experimental design and relationship with their characteristics. Biomass Bioenergy 35, 1235–1244 (2011)

    Article  CAS  Google Scholar 

  • Jones, A.P.: Indoor air quality and health. In: Austin, J., Brimblecombe, P., Sturges, W. (eds.) Developments in Environmental Science. Elsevier, Amsterdam (2002)

    Google Scholar 

  • Macías-Pérez, M.C., Lillo-Ródenas, M.A., Bueno-López, A., Salinas-Martínez de Lecea, C., Linares-Solano, M.: SO2 retention on CaO/activated carbon sorbents. Part II: effect of the activated carbon support. Fuel 87, 2544–2550 (2008)

    Article  Google Scholar 

  • Menéndez, J.A., Illán-Gómez, M.J., León y León, C.A., Radovic, L.R.: On the difference between the isoelectric point and the point of zero charge of carbons. Carbon 33(11), 1655–1659 (1995)

    Article  Google Scholar 

  • Lagorsse, S., Campo, M.C., Magalhaes, F.D., Mendes, A.: Water adsorption on carbon molecular sieve membranes: experimental data and isotherm model. Carbon 43, 2769–2779 (2005)

    Article  CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1402 (1918)

    Article  CAS  Google Scholar 

  • Lavanchi, A., Stoeckli, F.: Dynamic adsorption, in active carbon beds, of vapour mixtures corresponding to miscible and immiscible liquids. Carbon 37(2), 315–321 (1999)

    Article  Google Scholar 

  • Lillo-Rodenas, M.A., Cazorla-Amoros, D., Linares-Solano, A.: Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentration. Carbon 43, 1758–1767 (2005)

    Article  CAS  Google Scholar 

  • Naono, H., Hakuman, M.: Analysis of porous texture by means of water vapour adsorption isotherm with particular attention to lower limit of hysteresis loop. J. Colloid Interface Sci. 158, 19–26 (1993)

    Article  CAS  Google Scholar 

  • Neimark, A.V., Lin, Y., Ravikovitch, P.I., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617–1628 (2009)

    Article  CAS  Google Scholar 

  • Noh, J.S., Schwarz, J.A.: Estimation of the point of zero charge of simple oxides by mass titration. J. Colloid Interface Sci. 130(1), 157–164 (1988)

    Article  Google Scholar 

  • Noh, J.S., Schwarz, J.A.: Effect of HNO3 treatment on the surface acidity of activated carbons. Carbon 28(5), 675–682 (1990)

    Article  CAS  Google Scholar 

  • Ouensanga, A., Largitte, L., Arsene, M.A.: The dependence of char yield on the amounts of components in precursors for pyrolysed tropical fruit stones and seeds. Micorporous Mesorporous Mater. 59, 85–91 (2003)

    Article  CAS  Google Scholar 

  • Puziy, A.M., Poddubnaya, O.I., Martínez-Alonso, A., Suárez-García, F., Tascón, J.M.D.: Synthetic carbons activated with phosphoric acid I. Surface chemistry and ion binding properties. Carbon 40, 1493–1505 (2002)

    Article  CAS  Google Scholar 

  • Puziy, A.M., Poddubnaya, O.I., Martínez-Alonso, A., Suárez-García, F., Tascón, J.M.D.: Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon 43, 2857–2868 (2005)

    Article  CAS  Google Scholar 

  • Ruddy, E.N., Carroll, L.A.: Select the best VOC control strategy. Chem. Eng. Prog. 89, 28–35 (1993)

    Google Scholar 

  • Salame, I.I., Bandosz, T.J.: Experimental study of water adsorption on activated carbons. Langmuir 15, 587–593 (1999a)

    Article  CAS  Google Scholar 

  • Salame, I.I., Bandosz, T.J.: Study of water adsorption on activated carbons with different degrees of surface oxidation. J. Colloid Interface Sci. 210, 367–374 (1999b)

    Article  CAS  Google Scholar 

  • Sillman, S.: Tropospheric ozone and photochemical smog. In: Heinrich, D., Hollan, Karl K. (eds.) Treatise on Geochemistry, vol 9, pp. 407–431. Elsevier, Turekian (2003)

  • Silvestre-Albero, A., Silvestre-Albero, J., Sepúlveda-Escribano, A., Rodríguez-Reinoso, F.: Ethanol removal using activated carbon: effect of porous structure and surface chemistry. Microporous Mesoporous Mater. 120, 62–68 (2009)

    Article  CAS  Google Scholar 

  • Suárez-García, F., Martínez-Alonso, A., Tascón, J.M.D.: Activated carbon fibers from Nomex by chemical activation with phosphoric acid. Carbon 42, 1419–1426 (2004)

    Article  Google Scholar 

  • Valente Nabais, J.M., Laginhas, C.E.C., Carrott, P.J.M., Ribeiro Carrott, M.M.L.: Production of activated carbons from almond shell. Fuel Process. Technol. 92, 234–240 (2011)

    Article  Google Scholar 

  • Werner, M.D.: The effects of relative humidity on the vapour phase adsorption of trichloroethylene by activated carbon. Am. Ind. Hyg. Assoc. J. 46(10), 585–590 (1985)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martínez de Yuso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez de Yuso, A., Izquierdo, M.T., Rubio, B. et al. Adsorption of toluene and toluene–water vapor mixture on almond shell based activated carbons. Adsorption 19, 1137–1148 (2013). https://doi.org/10.1007/s10450-013-9540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9540-5

Keywords

Navigation