Skip to main content
Log in

Simultaneous adsorption of selected VOCs in the gas environment by low-cost adsorbent from Ricinus communis

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Benzene, toluene, ethylbenzene, and xylenes are commonly known as (BTEX) and include volatile organic compounds (VOCs) in ambient air. Exposure to some BTEX has been associated with health risks. This study aimed to reduce BTEX on the environment and human health dramatically. This research targeted decreasing the BTEX in an air environment by producing high surface area activated carbon (KA-AC) under optimized synthesis conditions from Ricinus communis as lignocellulosic waste using ZnCl2 solution, respectively. The influence of several activation parameters was investigated on the surface area, such as impregnation ratio, carbonization time, and carbonization temperature. The KA5-AC prepared under optimized conditions showed BET surface area and total pore volume of 1225 m2/g, and 0.72 cm3/g, respectively. The optimized synthesis conditions were as follows: 0.1, 0.5, 1, 2, and 5 M impregnation ratio, 450–950 °C carbonization temperature, and 100 min carbonization time. The characteristics of the optimized KA-AC were analyzed using nitrogen adsorption–desorption isotherm, scanning electron microscopy, and pore structural analysis. The results confirmed that the VOCs adsorption on KA-AC followed a monolayer adsorption isotherm over a homogeneous adsorbent surface. It showed the removal efficiency of benzene, toluene, ethylbenzene, and m, p-xylene (R2 = from 0.991 to 0.997). Moreover, the KA-AC exhibited good performance without considerable loss of efficacy throughout the experiments. Accordingly, it is concluded that developing low-cost activated carbon to use BTEX vapor adsorption research could be practical and developments to overcome for utilization in air pollution control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data will be provided by corresponding author under reasonable requests.

References

  1. Aggarwal P, Jain S (2015) Impact of air pollutants from surface transport sources on human health: a modeling and epidemiological approach. Environ Int 83:146–157. https://doi.org/10.1016/j.envint.2015.06.010

    Article  CAS  Google Scholar 

  2. Saxena P, Sonwani S (2019) Criteria air pollutants: chemistry, sources and sinks. Criteria air pollutants and their impact on environmental health. Springer, Singapore, pp 7–48

    Chapter  Google Scholar 

  3. Guo H, Lee SC, Chan LY, Li WM (2004) Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res 94(1):57–66. https://doi.org/10.1016/S0013-9351(03)00035-5

    Article  CAS  Google Scholar 

  4. Liu Y, Shao M, Fu L, Lu S, Zeng L, Tang D (2008) Source profiles of volatile organic compounds (VOCs) measured in China: part I. Atmos Environ 42(25):6247–6260. https://doi.org/10.1016/j.atmosenv.2008.01.070

    Article  CAS  Google Scholar 

  5. Zhang X, Gao B, Creamer AE, Cao C, Li Y (2017) Adsorption of VOCs onto engineered carbon materials: a review. J Hazard Mater 338:102–123. https://doi.org/10.1016/j.jhazmat.2017.05.013

    Article  CAS  Google Scholar 

  6. Zhu L, Shen D, Luo KH (2020) A critical review on VOCs adsorption by different porous materials: species, mechanisms and modification methods. J Hazard Mater 389:122102. https://doi.org/10.1016/j.jhazmat.2020.122102

    Article  CAS  Google Scholar 

  7. He Z, Li G, Chen J, Huang Y, An T, Zhang C (2015) Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops. Environ Int 77:85–94. https://doi.org/10.1016/j.envint.2015.01.004

    Article  CAS  Google Scholar 

  8. Bari MA, Kindzierski WB (2018) Ambient volatile organic compounds (VOCs) in Calgary, Alberta: sources and screening health risk assessment. Sci Total Environ 631:627–640. https://doi.org/10.1016/j.scitotenv.2018.03.023

    Article  CAS  Google Scholar 

  9. Li L, Xie S, Zeng L, Wu R, Li J (2015) Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China. Atmos Environ 113:247–254. https://doi.org/10.1016/j.atmosenv.2015.05.021

    Article  CAS  Google Scholar 

  10. Jenkin ME, Derwent RG, Wallington TJ (2017) Photochemical ozone creation potentials for volatile organic compounds: Rationalization and estimation. Atmos Environ 163:128–137. https://doi.org/10.1016/j.atmosenv.2017.05.024

    Article  CAS  Google Scholar 

  11. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z (2019) Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev 119(7):4471–4568. https://doi.org/10.1021/acs.chemrev.8b00408

    Article  CAS  Google Scholar 

  12. Chang CT, Chen BY (2008) Toxicity assessment of volatile organic compounds and polycyclic aromatic hydrocarbons in motorcycle exhaust. J Hazard Mater 153(3):1262–1269. https://doi.org/10.1016/j.jhazmat.2007.09.091

    Article  CAS  Google Scholar 

  13. Atamaleki A, Motesaddi Zarandi S, Massoudinejad M, Samimi K, Fakhri Y, Ghorbanian M, Mousavi Khaneghah A (2021) The effect of frying process on the emission of the volatile organic compounds and monocyclic aromatic group (BTEX). Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1950148

    Article  Google Scholar 

  14. Li AJ, Pal VK, Kannan K (2021) A review of environmental occurrence, toxicity, biotransformation and biomonitoring of volatile organic compounds. Environ Chem Ecotoxicol 3:91–116. https://doi.org/10.1016/j.enceco.2021.01.001

    Article  CAS  Google Scholar 

  15. Niu H, Mo Z, Shao M, Lu S, Xie S (2016) Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation. Front Environ Sci Eng 10(5):1–11. https://doi.org/10.1007/s11783-016-0828-z

    Article  CAS  Google Scholar 

  16. Helen GS, Liakoni E, Nardone N, Addo N, Jacob P, Benowitz NL (2020) Comparison of systemic exposure to toxic and/or carcinogenic volatile organic compounds (VOC) during vaping, smoking, and abstention. Cancer Prev Res 13(2):153–162. https://doi.org/10.1158/1940-6207.CAPR-19-0356

    Article  Google Scholar 

  17. Simon V, Baer M, Torres L, Olivier S, Meybeck M, Della Massa JP (2004) The impact of reduction in the benzene limit value in gasoline on airborne benzene, toluene and xylenes levels. Sci Total Environ 334:177–183. https://doi.org/10.1016/j.scitotenv.2004.04.065

    Article  CAS  Google Scholar 

  18. Wu H (2010) Correlations between the Rayleigh ratio and the wavelength for toluene and benzene. Chem Phys 367(1):44–47. https://doi.org/10.1016/j.chemphys.2009.10.019

    Article  CAS  Google Scholar 

  19. Villanueva F, Notario A, Adame JA, Millán MC, Mabilia R, Albaladejo J (2013) A preliminary study on ambient levels of carbonyls, benzene, toluene and xylene in the south-west of the Iberian Peninsula (Huelva coast), Spain. Environ Technol 34(3):289–299. https://doi.org/10.1080/09593330.2012.692719

    Article  CAS  Google Scholar 

  20. International Agency for Research on Cancer (2012) A review of human carcinogens. F. Chemical Agents and Related Occupations: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono100F.pdf. Accessed 10 May 2022

  21. Rushton L, Brown TP, Cherrie J, Fortunato L, Van Tongeren M, Hutchings SJ (2010) How much does benzene contribute to the overall burden of cancer due to occupation? Chem Biol Interact 184(1–2):290–292. https://doi.org/10.1016/j.cbi.2009.11.007

    Article  CAS  Google Scholar 

  22. Werder EJ, Engel LS, Blair A, Kwok RK, McGrath JA, Sandler DP (2019) Blood BTEX levels and neurologic symptoms in Gulf states residents. Environ Res 175:100–107. https://doi.org/10.1016/j.envres.2019.05.004

    Article  CAS  Google Scholar 

  23. Maleki R, Asadgol Z, Kermani M, Jonidi Jafari A, Arfaeinia H, Gholami M (2020) Monitoring BTEX compounds and asbestos fibers in the ambient air of Tehran, Iran: seasonal variations, spatial distribution, potential sources, and risk assessment. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1781836

    Article  Google Scholar 

  24. Santiago F, Alves G, Otero UB, Tabalipa MM, Scherrer LR, Kosyakova N, Liehr T (2014) Monitoring of gas station attendants exposure to benzene, toluene, xylene (BTX) using three-color chromosome painting. Mol Cytogenet 7(1):1–7. https://doi.org/10.1186/1755-8166-7-15

    Article  CAS  Google Scholar 

  25. da Poça KS, Giardini I, Silva PVB, Geraldino BR, Bellomo A, Alves JA, Sarpa M (2021) Gasoline-station workers in Brazil: benzene exposure; genotoxic and immunotoxic effects. Mutat Res Genet Toxicol Environ Mutagenesis 865:503322. https://doi.org/10.1016/j.mrgentox.2021.503322

    Article  CAS  Google Scholar 

  26. Elango N, Kasi V, Vembhu B, Poornima JG (2013) Chronic exposure to emissions from photocopiers in copy shops causes oxidative stress and systematic inflammation among photocopier operators in India. Environ Health 12(1):1–12. https://doi.org/10.1186/1476-069X-12-78

    Article  CAS  Google Scholar 

  27. Senthong P, Wittayasilp S (2018) Measurements and health impacts of carbon black and BTEXs in photocopy centers. Arch Environ Occup Health 73(3):169–175. https://doi.org/10.1080/19338244.2017.1400940

    Article  CAS  Google Scholar 

  28. Davis AY, Zhang Q, Wong JP, Weber RJ, Black MS (2019) Characterization of volatile organic compound emissions from consumer level material extrusion 3D printers. Build Environ 160:106209. https://doi.org/10.1016/j.buildenv.2019.106209

    Article  Google Scholar 

  29. Kim KH, Pandey SK, Kabir E, Susaya J, Brown RJ (2011) The modern paradox of unregulated cooking activities and indoor air quality. J Hazard Mater 195:1–10. https://doi.org/10.1016/j.jhazmat.2011.08.037

    Article  CAS  Google Scholar 

  30. Heshmati A, Ghadimi S, Khaneghah AM, Barba FJ, Lorenzo JM, Nazemi F, Fakhri Y (2018) Risk assessment of benzene in food samples of Iran’s market. Food Chem Toxicol 114:278–284. https://doi.org/10.1016/j.fct.2018.02.043

    Article  CAS  Google Scholar 

  31. Hadei M, Hopke PK, Shahsavani A, Moradi M, Yarahmadi M, Emam B, Rastkari N (2018) Indoor concentrations of VOCs in beauty salons; association with cosmetic practices and health risk assessment. J Occup Med Toxicol 13(1):1–9. https://doi.org/10.1186/s12995-018-0213-x

    Article  CAS  Google Scholar 

  32. Moradi M, Hopke P, Hadei M, Eslami A, Rastkari N, Naghdali Z, Shahsavani A (2019) Exposure to BTEX in beauty salons: biomonitoring, urinary excretion, clinical symptoms, and health risk assessments. Environ Monit Assess 191(5):1–10. https://doi.org/10.1007/s10661-019-7455-7

    Article  CAS  Google Scholar 

  33. Mokammel A, Rostami R, Niazi S, Asgari A, Fazlzadeh M (2022) BTEX levels in rural households: heating system, building characteristic impacts and lifetime excess cancer risk assessment. Environ Pollut. https://doi.org/10.1016/j.envpol.2022.118845

    Article  Google Scholar 

  34. Hopf NB, Kirkeleit J, Bråtveit M, Succop P, Talaska G, Moen BE (2012) Evaluation of exposure biomarkers in offshore workers exposed to low benzene and toluene concentrations. Int Arch Occup Environ Health 85(3):261–271. https://doi.org/10.1007/s00420-011-0664-1

    Article  CAS  Google Scholar 

  35. Protano C, Andreoli R, Manini P, Guidotti M, Vitali M (2012) A tobacco-related carcinogen: assessing the impact of smoking behaviours of cohabitants on benzene exposure in children. Tob Control 21(3):325–329. https://doi.org/10.1136/tc.2010.039255

    Article  Google Scholar 

  36. Fedoruk MJ, Kerger BD (2003) Measurement of volatile organic compounds inside automobiles. J Eposure Sci Environ Epidemiol 13(1):31–41. https://doi.org/10.1038/sj.jea.7500250

    Article  CAS  Google Scholar 

  37. Badjagbo K, Loranger S, Moore S, Tardif R, Sauve S (2010) BTEX exposures among automobile mechanics and painters and their associated health risks. Hum Ecol Risk Assess Int J 16(2):301–316. https://doi.org/10.1080/10807031003670071

    Article  CAS  Google Scholar 

  38. Jayawardhana Y, Mayakaduwa SS, Kumarathilaka P, Gamage S, Vithanage M (2019) Municipal solid waste-derived biochar for the removal of benzene from landfill leachate. Environ Geochem Health 41(4):1739–1753. https://doi.org/10.1007/s10653-017-9973-y

    Article  CAS  Google Scholar 

  39. Dehghani M, Mohammadpour A, Abbasi A, Rostami I, Gharehchahi E, Derakhshan Z, Conti GO (2022) Health risks of inhalation exposure to BTEX in a municipal wastewater treatment plant in Middle East city: Shiraz, Iran. Environ Res. https://doi.org/10.1016/j.envres.2021.112155

    Article  Google Scholar 

  40. Adebesin F, Widhalm JR, Boachon B, Lefèvre F, Pierman B, Lynch JH, Dudareva N (2017) Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science 356(6345):1386–1388. https://doi.org/10.1126/science.aan0826

    Article  CAS  Google Scholar 

  41. Yu KP, Lee GWM, Huang WM, Wu CC, Lou CL, Yang S (2006) Effectiveness of photocatalytic filter for removing volatile organic compounds in the heating, ventilation, and air conditioning system. J Air Waste Manag Assoc 56(5):666–674. https://doi.org/10.1080/10473289.2006.10464482

    Article  CAS  Google Scholar 

  42. Schnabel R, Fijten R, Smolinska A, Dallinga J, Boumans ML, Stobberingh E, van Schooten FJ (2015) Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia. Sci Rep 5(1):1–10. https://doi.org/10.1038/srep17179

    Article  CAS  Google Scholar 

  43. Krugly E, Pitak O, Ciuzas D, Tichonovas M, Stasiulaitiene I, Urniezaite I, Martuzevicius D (2022) VOC removal from ventilation air by gas-to-particle conversion: towords the enhancement of process efficiency. Build Environ 209:108647. https://doi.org/10.1016/j.buildenv.2021.108647

    Article  Google Scholar 

  44. Council Directive 96/62/EC, of 27 September 1996 On ambient air quality assessment and management (The Framework Directive). From the Official Journal of the European Communities, 21.11.1996, En Series, L296/55

  45. Council Directive 1999/30/EC, of 22 April 1999. Relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air (The First Daughter Directive). From the Official Journal of the European Communities, 29.6.1999, En Series, L163/41

  46. Council Directive 2000/69/EC 2000. Relating to Limit Values for Benzene and Carbon Monoxide in Ambient Air

  47. Feng C, Khulbe KC, Tabe S (2012) Volatile organic compound removal by membrane gas stripping using electro-spun nanofiber membrane. Desalination 287:98–102. https://doi.org/10.1016/j.desal.2011.04.074

    Article  CAS  Google Scholar 

  48. Zhou X, Moghaddam TB, Chen M, Wu S, Adhikari S (2020) Biochar removes volatile organic compounds generated from asphalt. Sci Total Environ 745:141096. https://doi.org/10.1016/j.scitotenv.2020.141096

    Article  CAS  Google Scholar 

  49. Simpson IJ, Marrero JE, Batterman S, Meinardi S, Barletta B, Blake DR (2013) Air quality in the Industrial Heartland of Alberta, Canada and potential impacts on human health. Atmos Environ 81:702–709. https://doi.org/10.1016/j.atmosenv.2013.09.017

    Article  CAS  Google Scholar 

  50. Soni V, Singh P, Shree V, Goel V (2018) Effects of VOCs on human health. In: Sharma N, Agarwal A, Eastwood P, Gupta T, Singh A (eds) Air pollution and control. Energy, environment, and sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7185-0_8

    Chapter  Google Scholar 

  51. Iranpour R, Cox HH, Deshusses MA, Schroeder ED (2005) Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ Prog 24(3):254–267. https://doi.org/10.1002/ep.10077

    Article  CAS  Google Scholar 

  52. Guieysse B, Hort C, Platel V, Munoz R, Ondarts M, Revah S (2008) Biological treatment of indoor air for VOC removal: potential and challenges. Biotechnol Adv 26(5):398–410. https://doi.org/10.1016/j.biotechadv.2008.03.005

    Article  CAS  Google Scholar 

  53. Huang Y, Ho SSH, Lu Y, Niu R, Xu L, Cao J, Lee S (2016) Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules 21(1):56. https://doi.org/10.3390/molecules21010056

    Article  CAS  Google Scholar 

  54. Yang C, Miao G, Pi Y, Xia Q, Wu J, Li Z, Xiao J (2019) Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chem Eng J 370:1128–1153. https://doi.org/10.1016/j.cej.2019.03.232

    Article  CAS  Google Scholar 

  55. Almaie S, Vatanpour V, Rasoulifard MH, Koyuncu I (2022) Volatile organic compounds (VOCs) removal by photocatalysts: Aa review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.135655

    Article  Google Scholar 

  56. Dobre T, Pârvulescu OC, Iavorschi G, Stroescu M, Stoica A (2014) Volatile organic compounds removal from gas streams by adsorption onto activated carbon. Ind Eng Chem Res 53(9):3622–3628. https://doi.org/10.1021/ie402504u

    Article  CAS  Google Scholar 

  57. Gil ER, Ruiz B, Lozano MS, Martín MJ, Fuente E (2014) VOCs removal by adsorption onto activated carbons from biocollagenic wastes of vegetable tanning. Chem Eng J 245:80–88. https://doi.org/10.1016/j.cej.2014.02.012

    Article  CAS  Google Scholar 

  58. Xiang W, Zhang X, Chen K, Fang J, He F, Hu X, Gao B (2020) Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs). Chem Eng J 385:123842. https://doi.org/10.1016/j.cej.2019.123842

    Article  CAS  Google Scholar 

  59. Isinkaralar K (2022) Theoretical removal study of gas BTEX onto activated carbon produced from Digitalis purpurea L. biomass. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02558-2

    Article  Google Scholar 

  60. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  61. Chatterjee S, Saito T (2015) Lignin-derived advanced carbon materials. Chemsuschem 8(23):3941–3958. https://doi.org/10.1002/cssc.201500692

    Article  CAS  Google Scholar 

  62. Ponomarev N, Sillanpää M (2019) Combined chemical-templated activation of hydrolytic lignin for producing porous carbon. Ind Crops Prod 135:30–38. https://doi.org/10.1016/j.indcrop.2019.03.050

    Article  CAS  Google Scholar 

  63. Gómez-Avilés A, Peñas-Garzón M, Belver C, Rodriguez JJ, Bedia J (2021) Equilibrium, kinetics and breakthrough curves of acetaminophen adsorption onto activated carbons from microwave-assisted FeCl3-activation of lignin. Sep Purif Technol 278:119654. https://doi.org/10.1016/j.seppur.2021.119654

    Article  CAS  Google Scholar 

  64. Maneerung T, Liew J, Dai Y, Kawi S, Chong C, Wang CH (2016) Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies. Biores Technol 200:350–359. https://doi.org/10.1016/j.biortech.2015.10.047

    Article  CAS  Google Scholar 

  65. Ioannidou OA, Zabaniotou AA, Stavropoulos GG, Islam MA, Albanis TA (2010) Preparation of activated carbons from agricultural residues for pesticide adsorption. Chemosphere 80(11):1328–1336. https://doi.org/10.1016/j.chemosphere.2010.06.044

    Article  CAS  Google Scholar 

  66. Vargas AM, Cazetta AL, Garcia CA, Moraes JC, Nogami EM, Lenzi E, Almeida VC (2011) Preparation and characterization of activated carbon from a new raw lignocellulosic material: Flamboyant (Delonix regia) pods. J Environ Manage 92(1):178–184. https://doi.org/10.1016/j.jenvman.2010.09.013

    Article  CAS  Google Scholar 

  67. Nayak A, Bhushan B, Gupta V, Sharma P (2017) Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: effect of activation conditions. J Colloid Interface Sci 493:228–240. https://doi.org/10.1016/j.jcis.2017.01.031

    Article  CAS  Google Scholar 

  68. Santos-Clotas E, Cabrera-Codony A, Ruiz B, Fuente E, Martín MJ (2019) Sewage biogas efficient purification by means of lignocellulosic waste-based activated carbons. Biores Technol 275:207–215. https://doi.org/10.1016/j.biortech.2018.12.060

    Article  CAS  Google Scholar 

  69. Piccin JS, Cadaval TRSA, Pinto LAAD, Dotto GL (2017) Adsorption isotherms in liquid phase: experimental, modeling, and interpretations. Adsorption processes for water treatment and purification. Springer, Cham, pp 19–51. https://doi.org/10.1007/978-3-319-58136-1_2

    Chapter  Google Scholar 

  70. Sellaoui L, Saha BB, Wjihi S, Lamine AB (2017) Physicochemical parameters interpretation for adsorption equilibrium of ethanol on metal organic framework: application of the multilayer model with saturation. J Mol Liq 233:537–542. https://doi.org/10.1016/j.molliq.2016.07.017

    Article  CAS  Google Scholar 

  71. Chiang YC, Chiang PC, Huang CP (2001) Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 39(4):523–534. https://doi.org/10.1016/S0008-6223(00)00161-5

    Article  CAS  Google Scholar 

  72. Jia L, Shi J, Long C, Lian F, Xing B (2020) VOCs adsorption on activated carbon with initial water vapor contents: adsorption mechanism and modified characteristic curves. Sci Total Environ 731:139184. https://doi.org/10.1016/j.scitotenv.2020.139184

    Article  CAS  Google Scholar 

  73. Chen Q, Liu F, Mo J (2021) Vertical macro-channel modification of a flexible adsorption board with in-situ thermal regeneration for indoor gas purification to increase effective adsorption capacity. Environ Res 192:110218. https://doi.org/10.1016/j.envres.2020.110218

    Article  CAS  Google Scholar 

  74. Gebreegziabher TB, Wang S, Nam H (2019) Adsorption of H2S, NH3 and TMA from indoor air using porous corncob activated carbon: Isotherm and kinetics study. J Environ Chem Eng 7(4):103234. https://doi.org/10.1016/j.jece.2019.103234

    Article  CAS  Google Scholar 

  75. Isinkaralar K (2022) High-efficiency removal of benzene vapor using activated carbon from Althaea officinalis L. biomass as a lignocellulosic precursor. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-20579-2

    Article  Google Scholar 

  76. Sokhansanj A, Abdoli SM, Zabihi M (2020) Insight into simultaneous catalytic oxidation of benzene and toluene in air over the nano-catalyst: Experimental and modeling via CFD-ANN hybrid method. Process Saf Environ Prot 141:321–332. https://doi.org/10.1016/j.psep.2020.05.035

    Article  CAS  Google Scholar 

  77. Liu R, Song H, Li B, Li X, Zhu T (2021) Simultaneous removal of toluene and styrene by non-thermal plasma-catalysis: Effect of VOCs interaction and system configuration. Chemosphere 263:127893. https://doi.org/10.1016/j.chemosphere.2020.127893

    Article  CAS  Google Scholar 

  78. Liu Z, Adewuyi YG, Shi S, Chen H, Li Y, Liu D, Liu Y (2019) Removal of gaseous Hg0 using novel seaweed biomass-based activated carbon. Chem Eng J 366:41–49. https://doi.org/10.1016/j.cej.2019.02.025

    Article  CAS  Google Scholar 

  79. Lin W, Xie X, Wang X, Wang Y, Segets D, Sun J (2018) Efficient adsorption and sustainable degradation of gaseous acetaldehyde and o-xylene using rGO-TiO2 photocatalyst. Chem Eng J 349:708–718. https://doi.org/10.1016/j.cej.2018.05.107

    Article  CAS  Google Scholar 

  80. Ravenni G, Elhami OH, Ahrenfeldt J, Henriksen UB, Neubauer Y (2019) Adsorption and decomposition of tar model compounds over the surface of gasification char and active carbon within the temperature range 250–800° C. Appl Energy 241:139–151. https://doi.org/10.1016/j.apenergy.2019.03.032

    Article  CAS  Google Scholar 

  81. Guo Y, Tan C, Sun J, Li W, Zhang J, Zhao C (2020) Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption. Chem Eng J 381:122736. https://doi.org/10.1016/j.cej.2019.122736

    Article  CAS  Google Scholar 

  82. Ma X, Yang L, Wu H (2021) Removal of volatile organic compounds from the coal-fired flue gas by adsorption on activated carbon. J Clean Prod 302:126925. https://doi.org/10.1016/j.jclepro.2021.126925

    Article  CAS  Google Scholar 

Download references

Funding

There is no financial support and commercial support.

Author information

Authors and Affiliations

Authors

Contributions

KI: raw material collection, processing analysis, and interpretation; AT: materials, processing analysis and literature search.

Corresponding author

Correspondence to Kaan Isinkaralar.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Ethical approval

Not applicable.

Consent to publish

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isinkaralar, K., Turkyilmaz, A. Simultaneous adsorption of selected VOCs in the gas environment by low-cost adsorbent from Ricinus communis. Carbon Lett. 32, 1781–1789 (2022). https://doi.org/10.1007/s42823-022-00399-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00399-7

Keywords

Navigation