Skip to main content
Log in

Salt-assisted liquid–liquid extraction coupled with reversed-phase dispersive liquid–liquid microextraction for sensitive HPLC determination of paraquat in environmental and food samples

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, salt-assisted liquid–liquid extraction (SALLE) method is coupled with reversed-phase dispersive liquid–liquid microextraction (RP-DLLME) as a novel method for the determination of paraquat in various samples. Firstly, paraquat was extracted from the aqueous phase into the acetonitrile and then it pre-concentrated into the aqueous phase using the RP-DLLME method. Influential parameters of SALLE such as extracting solvent, volume of extracting solvent, sample pH, salt and its concentration were optimized. Also, effective parameters of RP-DLLME including immiscible solvent and its volume, and water volume as extracting solvent were investigated. Under the optimized conditions recoveries and relative standard deviations were in the range of 80.0–96.0 and 3.5–7.5, respectively. The limit of detection and limit of quantification of method were 0.02 and 0.09 µg/mL, respectively. The proposed method successfully was applied for the determination of paraquat in food and environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.H. Jae, H.K. Kim, J.T. Kwon, S.H. Lee, S. Park, H.W. Gil, H.-Y. Song, S.-Y. Hong, Effect of MDR1 gene polymorphisms on mortality in paraquat intoxicated patients. Sci. Rep. 6, 31765 (2016)

    Article  CAS  Google Scholar 

  2. T.R. Hawkes, Mechanisms of resistance to paraquat in plants. Pest Manag. Sci. 70, 1316–1323 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. Y. Chen, Y.C. Nie, Y.L. Luo, F. Lin, Y.F. Zheng, G.H. Cheng, H. Wub, K.J. Zhang, W.W. Su, J.G. Shen, P.B. Li, Protective effects of naringin against paraquat-induced acute lung injury and pulmonary fibrosis in mice. Food Chem. Toxicol. 58, 133–140 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. F. Mohamed, N.A. Buckley, S. Jayamanne, J.W. Pickering, P. Peake, C. Palangasinghe, T. Wijerathna, I. Ratnayake, F. Shihana, Z.H. Endre, Kidney damage biomarkers detect acute kidney injury but only functional markers predict mortality after paraquat ingestion. Toxicol. Lett. 237, 140–150 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. H.W. Gil, J.R. Hong, S.H. Jang, S.Y. Hong, Diagnostic and therapeutic approach for acute paraquat intoxication. J. Korean Med. Sci. 29, 1441–1449 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. P. Chuntib, J. Jakmunee, Simple flow injection colorimetric system for determination of paraquat in natural water. Talanta 144, 432–438 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. K. Tyszczuk-Rotko, I. Bęczkowska, A. Nosal-Wiercińska, Simple, selective and sensitive voltammetric method for the determination of herbicide (paraquat) using a bare boron-doped diamond electrode. Diam. Relat. Mater. 50, 86–90 (2014)

    Article  CAS  Google Scholar 

  8. A. Gevaerd, P.R. de Oliveira, A.S. Mangrich, M.F. Bergamini, L.H. Marcolino-Junior, Evaluation of antimony microparticles supported on biochar for application in the voltammetric determination of paraquat. Mater. Sci. Eng. C 26, 123–129 (2016)

    Article  CAS  Google Scholar 

  9. C. Kalinke, A.S. Mangrich, L.H. Marcolino-Junior, M.F. Bergamini, Carbon paste electrode modified with biochar for sensitive electrochemical determination of paraquat. Electroanalysis 28, 764–769 (2016)

    Article  CAS  Google Scholar 

  10. W. Siangproh, T. Somboonsuk, O. Chailapakul, K. Songsrirote, Novel colorimetric assay for paraquat detection on-silica bead using negatively charged silver nanoparticles. Talanta 174, 448–453 (2017)

    Article  CAS  PubMed  Google Scholar 

  11. I.R. Pizzutti, G.M.E. Vela, A. de Kok, J.M. Scholten, J.V. Dias, C.D. Cardoso, G. Concenço, R. Vivian, Determination of paraquat and diquat: LC-MS method optimization and validation. Food Chem. 209, 248–255 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. R. Lanaro, J.L. Costa, S.O.S. Cazenave, L.A. Zanolli-Filho, M.F.M. Tavares, A.A.M. Chasin, Determination of herbicides paraquat, glyphosate, and aminomethylphosphonic acid in marijuana samples by capillary electrophoresis. J. Forensic Sci. 60, 241–247 (2015)

    Article  CAS  Google Scholar 

  13. S. Jafarinejad, Recent advances in determination of herbicide paraquat in environmental waters and its removal from aqueous solutions: a review. Int. Res. J. Appl. Basic Sci. 9, 1758–1774 (2015)

    CAS  Google Scholar 

  14. M. Trojanowicz, K. Kołacińska, Recent advances in flow injection analysis. Analyst 141, 2085–2139 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. S. Hara, N. Sasaki, D. Takase, S. Shiotsuka, K. Ogata, K. Futagami, K. Tamura, Rapid and sensitive HPLC method for the simultaneous determination of paraquat and diquat in human serum. Anal. Sci. 23, 523–526 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. Y.C. Tsao, Y.C. Lai, H.C. Liu, R.H. Liu, D.L. Lin, Simultaneous determination and quantitation of paraquat, diquat, glufosinate and glyphosate in postmortem blood and urine by LC–MS–MS. J. Anal. Toxicol. 40, 427–436 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. O. Núñez, J.B. Kim, E. Moyano, M.T. Galceran, S. Terabe, Analysis of the herbicides paraquat, diquat and difenzoquat in drinking water by micellar electrokinetic chromatography using sweeping and cation selective exhaustive injection. J. Chromatogr. A 961, 65–75 (2002)

    Article  PubMed  Google Scholar 

  18. W.T. Tsai, A review on environmental exposure and health risks of herbicide paraquat. Toxicol. Environ. Chem. 2, 197–206 (2013)

    Article  CAS  Google Scholar 

  19. R. Heydari, M. Hosseini, R. Rezaeepour, Semi-automated salt-assisted liquid–liquid extraction coupled to high-performance liquid chromatography to determine three aromatic hydrocarbons in aqueous samples. J. Iran. Chem. Soc. 14, 1691–1698 (2017)

    Article  CAS  Google Scholar 

  20. R. Rezaeepour, R. Heydari, A. Ismaili, Ultrasound and salt-assisted liquid–liquid extraction as an efficient method for natural product extraction. Anal. Methods 7, 3253–3259 (2015)

    Article  CAS  Google Scholar 

  21. R. Heydari, S. Zarabi, Development of combined salt- and air-assisted liquid-liquid microextraction as a novel sample preparation technique. Anal. Methods 6, 8469–8475 (2014)

    Article  CAS  Google Scholar 

  22. M. Hosseini, R. Heydari, M. Alimoradi, Vortex and air assisted liquid-liquid microextraction as a sample preparation method for high-performed liquid chromatography determinations. Talanta 130, 171–176 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. Y.Q. Tang, N. Weng, Salting-out assisted liquid–liquid extraction for bioanalysis. Bioanalysis 5, 1583–1598 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. R. Salimikia, F. Heydari, Yazdankhah, Polyaniline/graphene oxide nanocomposite as a sorbent for extraction and determination of nicotine using headspace solid-phase microextraction and gas chromatography–flame. J. Iran. Chem. Soc. 15, 1593–1601 (2018)

    Article  CAS  Google Scholar 

  25. M. Mohebbi, R. Heydari, M. Ramezani, Solvent-vapor-assisted liquid–liquid microextraction: a novel method for the determination of phthalate esters in aqueous samples using GC–MS. J. Sep. Sci. 40, 4394–4402 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. M. Rashidipour, R. Heydari, A. Feizbakhsh, P. Hashemi, Rapid monitoring of carvacrol in plants and herbal medicines using matrix solid-phase dispersion and gas chromatography flame ionisation detector. Nat. Prod. Res. 29, 621–627 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. M. Rashidipour, R. Heydari, A. Feizbakhsh, P. Hashemi, Rapid screening of oleuropein from olive leaves using matrix solid-phase dispersion and high-performance liquid chromatography. J. AOAC Int. 97, 1109–1113 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. Z. Pourghobadi, R. Heydari, R. Pourghobadi, M. Rashidipour, Determination of gabapentin in human plasma using simultaneous cloud point extraction and precolumn derivatization by HPLC. Monatsh. Chem. 144, 773–779 (2013)

    Article  CAS  Google Scholar 

  29. R. Heydari, Residual solvents determination in pharmaceuticals by static headspace-gas chromatography and headspace liquid-phase microextraction gas chromatography. Anal. Lett. 45, 1875–1884 (2012)

    Article  CAS  Google Scholar 

  30. P. Salehi, A.R. Fakhari, S. Nejad Ebrahimi, R. Heydari, Rapid essential oil screening of Rosmarinus officinalis L. by hydrodistillation–headspace solvent microextraction. Flavour Fragr. J. 22, 280–285 (2007)

    Article  CAS  Google Scholar 

  31. M.P. Godoy-Caballero, M.I. Acedo-Valenzuela, T. Galeano-Díaz, New reversed phase dispersive liquid-liquid microextraction method for the determination of phenolic compounds in virgin olive oil by rapid resolution liquid chromatography with UV-visible and mass spectrometry detection. J. Chromatogr. A 1313, 291–301 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. M. Hosseini, R. Heydari, M. Alimoradi, Reversed-phase vortex-assisted liquid-liquid microextraction: a new sample preparation method for the determination of amygdalin in oil and kernel samples. J. Sep. Sci. 38, 663–669 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. R. Heydari, M. Rashidipour, N. Naleini, Determination of efavirenz in plasma by dispersive liquid-liquid microextraction coupled to high-performance liquid chromatography. Curr. Anal. Chem. 10, 280–287 (2014)

    Article  CAS  Google Scholar 

  34. M. Mohebbi, R. Heydari, M. Ramezani, Determination of Cu, Cd, Ni, Pb and Zn in edible oils using reversed-phase ultrasonic assisted liquid–liquid microextraction and flame atomic absorption spectrometry. J. Anal. Chem. 73, 30–35 (2018)

    Article  CAS  Google Scholar 

  35. P. Hashemi, F. Raeisi, A.R. Ghiasvand, A. Rahimi, Reversed-phase dispersive liquid–liquid microextraction with central composite design optimization for preconcentration and HPLC determination of oleuropein. Talanta 80, 1926–1931 (2010)

    Article  CAS  PubMed  Google Scholar 

  36. D.I.S. Kolberg, D. Mack, M. Anastassiades, M.T. Hetmanski, R.J. Fussell, T. Meijer, H.G.J. Mol, Development and independent laboratory validation of a simple method for the determination of paraquat and diquat in potato, cereals and pulses. Anal. Bioanal. Chem. 404, 2465–2474 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. H.S. Lee, K. Kim, J.H. Kim, K.S. Do, S.K. Lee, On-line sample preparation of paraquat in human serum samples using high-performance liquid chromatography with column switching. J. Chromatogr. B 716, 371–374 (1998)

    Article  CAS  Google Scholar 

  38. R. Gill, S.C. Qua, A.C. Moffat, High-performance liquid chromatography of paraquat and diquat in urine with rapid sample preparation involving ion-pair extraction on disposable cartridges of octadecylsilica. J. Chromatogr. 255, 483–490 (1983)

    Article  CAS  PubMed  Google Scholar 

  39. S. Ito, T. Nagata, K. Kudo, K. Kimura, T. Imamura, Simultaneous determination of paraquat and diquat in human tissues by high-performance liquid chromatography. J. Chromatogr. 617, 119–123 (1993)

    Article  CAS  PubMed  Google Scholar 

  40. X.P. Lee, T. Kumazawa, M. Fujishiro, C. Hasegawa, T. Arinobu, H. Seno, A. Ishii, K. Sato, Determination of paraquat and diquat in human body fluids by high-performance liquid chromatography/tandem mass spectrometry. J. Mass Spectrom. 39, 1147–1152 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. B. Winnik, D.B. Barr, M. Thiruchelvam, M.A. Montesano, E.K. Richfield, B. Buckley, Quantification of paraquat, MPTP, and MPP + in brain tissue using microwave-assisted solvent extraction (MASE) and high-performance liquid chromatography–mass spectrometry. Anal. Bioanal. Chem. 395, 195–201 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M.R. Brunetto, A.R. Morales, M. Gallignani, J.L. Burguera, M. Burguera, Determination of paraquat in human blood plasma using reversedphase ion-pair high-performance liquid chromatography with direct sample injection. Talanta 59, 913–921 (2003)

    Article  CAS  PubMed  Google Scholar 

  43. R.D. Whitehead, M.A. Montesano, N.K. Jayatilaka, B. Buckley, B. Winnik, L.L. Needham, D.B. Barr, Method for measurement of the quaternary amine compounds paraquat and diquat in human urine using high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 878, 2548–2553 (2010)

    Article  CAS  Google Scholar 

  44. C. Fuke, T. Arao, Y. Morinaga, H. Takaesu, K. Ameno, T. Miyazaki, Analysis of paraquat, diquat and two diquat metabolites in biological materials by high-performance liquid chromatography. Leg. Med. 4, 156–163 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Environmental Health Research Center of Kurdistan University of Medical Sciences (grant number: IR.MUK.1395.73) and Razi Herbal Medicines Research Center of Lorestan University of Medical Sciences (grant number: 1980). Also, this study was financially supported by the Biotechnology Development Council of the Islamic Republic of Iran (grant No: 970503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rouhollah Heydari or Behroz Davari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidipour, M., Heydari, R., Maleki, A. et al. Salt-assisted liquid–liquid extraction coupled with reversed-phase dispersive liquid–liquid microextraction for sensitive HPLC determination of paraquat in environmental and food samples. Food Measure 13, 269–276 (2019). https://doi.org/10.1007/s11694-018-9941-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9941-y

Keywords

Navigation