Skip to main content
Log in

Quantification of Paraquat, MPTP, and MPP+ in brain tissue using microwave-assisted solvent extraction (MASE) and high-performance liquid chromatography–mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Animal models, consistent with the hypothesis of direct interaction of paraquat (PQ) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) with specific areas of the central nervous system have been developed to study Parkinson’s disease (PD) in mice. These models have necessitated the creation of an analytical method for unambiguous identification and quantitation of PQ and structurally similar MPTP and 1-methyl-4-phenylpyridinium ion (MPP+) in brain tissue. A method for determination of these compounds was developed using microwave-assisted solvent extraction (MASE) and liquid chromatography–mass spectrometry. Extraction solvent and microwave conditions such as power and time were optimized to produce recoveries of 90% for PQ 78% for MPTP and 97% for its metabolite MPP+. The chromatographic separation was performed on a C8, column and detection was carried out using an ion trap as an analyzer with electrospray ionization. Mass spectrometer parameters such as heated capillary temperature, spray voltage, capillary voltage and others were also optimized for each analyte. Analysis was done in selective ion-monitoring (SIM) mode using m/z 186 for PQ, m/z 174 for MPTP, and m/z 170 for MPP+. The method detection limit for paraquat in matrix was 100 pg, 40 pg for MPTP, and 20 pg MPP+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haley T (1979) Clin Toxicol 14:1–461

    Article  CAS  Google Scholar 

  2. Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY et al (1997) Neurology 48:1583–1588

    CAS  Google Scholar 

  3. Thiruchelvam M, Brockel BJ, Richfield EK, Baggs RB, Cory-Slechta DA (2000) Brain Res 873:225–234

    Article  CAS  Google Scholar 

  4. Dinis-Oliveira RJ, Remião F, Carmo H, Duarte JA, Sánchez Navarro A, Bastos ML, Carvalho F (2006) NeuroToxicology 27:1110–1122

    Article  CAS  Google Scholar 

  5. R Betarbet, TB Sherer, G MacKenzie, M Garcia-Osuna, AV Panov & JT Greenamyre (2000) Nat Neurosci 3:1301-1306

  6. Gorell JM MD, Johnson CC PhD, Rybicki BA PhD, Peterson EL PhD, Richardson RJ ScD (1998) Neurology 50:1346-1350

  7. Meredith GE, Halliday GM, Totterdell S (2004) Parkinsonism & Related Disorders 10:191–202

    Article  Google Scholar 

  8. Thiruchelvam M, Cory-Slechta D (2002) NeuroToxicology 23:621–633

    Article  CAS  Google Scholar 

  9. Perry JC, Da Cunha C, Anselmo-Franci J, Andreatini R, Miyoshi E, Tufik S et al (2004) Eur J Pharmacol 484:225–233

    Article  CAS  Google Scholar 

  10. Cicchetti F, Lapointe N, Roberge-Tremblay A, Saint-Pierre M, Jimenez L, Ficke BW, Gross RE (2005) Neurobiol Dis 20:360–371

    Article  CAS  Google Scholar 

  11. Kuter K, Smialowska M, Wieronska J, Zieba B, Wardas J, Pietraszek M, Nowak P, Biedka I, Roczniak W, Konieczny J, Wolfarth S, Ossowska K (2007) Brain Res 1155:196–207

    Article  CAS  Google Scholar 

  12. McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA, Di Monte DA (2002) Neurobiol Dis 10:119–127

    Article  CAS  Google Scholar 

  13. Corasaniti MT (1990) J Chromatogr 527:189–195

    Article  CAS  Google Scholar 

  14. Castro R, Moyano E, Galceran MT (2001) J Chromatogr A 914:111–121

    Article  CAS  Google Scholar 

  15. Mutavdžić D, Babić S, Horvat AJM, Kaštelan-Macan M (2007) Trends Anal Chem 26:1062–1075

    Article  CAS  Google Scholar 

  16. Kaufmann B, Christen P (2002) Phytochem Anal 13:105–113

    Article  CAS  Google Scholar 

  17. Kavita Prasad, Elizabeth Tarasewicz, Jason Mathew, Pamela A. Ohman Strickland, Brian Buckley, Jason R. Richardson and Eric K. Richfield (2009) Exp Neurol 215:358-367

  18. Prasad K, Winnik B, Thiruchelvam M, Buckley B, Mirochnitchenko O, Ritchfield E (2007) Environ Health Perspect 115:1448–1453

    CAS  Google Scholar 

  19. Ralph D. Whitehead, Jr.1, M. Angela Montesano1, Nayana K. Jayatilaka1, Brian Buckley, Bozena Winnik, Larry L. Needham, and Dana B. Barr, Method for measurement of the quaternary amine compounds paraquat and diquat in human urine using high-performance liquid chromatography-tandem mass spectrometry, (2009) J. Chrom. B. in press

  20. Strelevitz TJ, Linhares MC (1996) J Chromatogr B 675:243–250

    Article  CAS  Google Scholar 

  21. Doerge DR, Fogle CM, Paile MG, McCullagh M, Bajic S (2000) Rapid Commun Mass Spectrom 14:619–623

    Article  CAS  Google Scholar 

  22. Sarah M.R. Wille, Kristof E. Maudens, Carlos H. Van Peteghem, Willy E.E. Lamber (2005) J Chromatogr A 1098:19-29

  23. Shinozuka T, Terada M, Tanaka E (2006) Forensic Sci Int 162:108–112

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grant ES005022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Buckley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winnik, B., Barr, D.B., Thiruchelvam, M. et al. Quantification of Paraquat, MPTP, and MPP+ in brain tissue using microwave-assisted solvent extraction (MASE) and high-performance liquid chromatography–mass spectrometry. Anal Bioanal Chem 395, 195–201 (2009). https://doi.org/10.1007/s00216-009-2929-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2929-z

Keywords

Navigation