Skip to main content
Log in

Stability of heat-induced lactoferrin–sodium caseinate complexes: effects of pH and ionic strength

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The interaction between lactoferrin (LF) and sodium caseinate (NaCas) can be improved by heating, which results in the formation of LF–NaCas complexes. However, the stability of those complexes under different conditions is unclear. This research investigated the stability of LF–NaCas complexes at different pHs and in different ionic environments. The results showed that stable LF–NaCas complexes can be formed at LF/NaCas ratios of 2:1 and 1:1, which have different structural and functional properties. At the ratio of 2:1, the resulted complexes were big with an average diameter of 140 ± 2.3 nm, while a much smaller average diameter of 53 ± 2.0 nm was obtained at the ratio of 1:1. At both ratios, complexes exhibited notable stability at the NaCl concentration up to 200 mmol L−1. The presence of calcium is detrimental to the stability of LF–NaCas complexes. Significant precipitation was observed even at the lowest concentration of 5 mmol L−1. On the other hand, both of the complexes showed great stability at pH ≥ 7.0 and ≤ 4.0, while significant precipitation happened at pH 5.0 and 6.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

LF:

Lactoferrin

NaCas:

Sodium caseinate

References

  1. S. Ko, S. Gunasekaran, Preparation of sub-100-nm β-lactoglobulin (BLG) nanoparticles. J. Microencapsul. 23, 887–898 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. P. Lestringant, A. Guri, I. Gülseren, P. Relkin, M. Corredig, Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes. J. Agric. Food Chem. 62, 8357–8364 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. Z. Zhao, Q. Xiao, Effect of chitosan on the heat stability of whey protein solution as a function of pH. J. Sci. Food Agric. 97, 1576–1581 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. O.G. Jones, U. Lesmes, P. Dubin, D.J. McClements, Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of β-lactoglobulin-pectin complexes. Food Hydrocolloids 24, 374–383 (2010)

    Article  CAS  Google Scholar 

  5. I. Schmidt, B. Novales, F. Boué, M.A.V. Axelos, Foaming properties of protein/pectin electrostatic complexes and foam structure at nanoscale. J. Colloid Interface Sci. 345, 316–324 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. D. Kurukji, I. Norton, F. Spyropoulos, Fabrication of sub-micron protein-chitosan electrostatic complexes for encapsulation and pH-modulated delivery of model hydrophilic active compounds. Food Hydrocolloids 53, 249–260 (2016)

    Article  CAS  Google Scholar 

  7. Y. Livney, N. Ron, Beta-Lactoglobulin (β-Lg)—Polysaccharide Complexes as Nanovehicles for Hydrophobic Nutraceuticals. XVth International Workshop on Bioencapsulation (S3-4), pp. 6–9 (2007)

  8. J.M. Steijns, A.C.M. van Hooijdonk, Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. Br. J. Nutr. 84, S11–S17 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. M. Tomita, H. Wakabayashi, K. Shin, K. Yamauchi, T. Yaeshima, K. Iwatsuki, Twenty-five years of research on bovine lactoferrin applications. Biochimie 91, 52–57 (2009)

    Article  CAS  PubMed  Google Scholar 

  10. W.D. Schwarcz, L. Carnelocce, J.L. Silva, A.C. Oliveira, R.B. Gonçalves, Conformational changes in bovine lactoferrin induced by slow or fast temperature increases. Biol. Chem. 389, 1137–1142 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. C. Bengoechea, O.G. Jones, A. Guerrero, D.J. McClements, Formation and characterization of lactoferrin/pectin electrostatic complexes: impact of composition, pH and thermal treatment. Food Hydrocolloids 25, 1227–1232 (2011)

    Article  CAS  Google Scholar 

  12. M. Hiroshi, N. Ueda, M. Morita, Y. Kakehi, T. Kobayashi, Thermal stability of the iron-lactoferrin complex in aqueous solution is improved by soluble soybean polysaccharide. Food Biophys. 7, 183–189 (2012)

    Article  Google Scholar 

  13. S.G. Anema, C.G. de Kruif, Co-acervates of lactoferrin and caseins. Soft Matter 8, 4471 (2012)

    Article  CAS  Google Scholar 

  14. C.G. De Kruif, F. Weinbreck, R. De Vries, Complex coacervation of proteins and anionic polysaccharides. Curr. Opin. Colloid Interface Sci. 9, 340–349 (2004)

    Article  CAS  Google Scholar 

  15. Q. Li, Z. Zhao, Formation of lactoferrin/sodium caseinate complexes and their adsorption behaviour at the air/water interface. Food Chem. 232, 697–703 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. J. Surh, E.A. Decker, D.J. Mcclements, Influence of pH and pectin type on properties and stability of sodium-caseinate stabilized oil-in-water emulsions. Food Hydrocolloids 20, 607–618 (2006)

    Article  CAS  Google Scholar 

  17. G. Brisson, M. Britten, Y. Pouliot, Heat-induced aggregation of bovine lactoferrin at neutral pH: effect of iron saturation. Int. Dairy J. 17, 617–624 (2007)

    Article  CAS  Google Scholar 

  18. S.G. Anema, C.G. De Kruif, Protein composition of different sized casein micelles in milk after the binding of lactoferrin or lysozyme. J. Agric. Food Chem. 61, 7142–7149 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. P. Müller-Buschbaum, R. Gebhardt, E. Metwalli, S.V. Roth, W. Doster, Effect of calcium concentration on the structure of casein micelles in thin film. Biophys. J. 93, 960–968 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. P.M. De Souza, A. Fernandez, R. Gavara, P. Hernandez-Muñoz, Modified sodium caseinate films as releasing carriers of lysozyme. Food Hydrocolloids 24, 300–306 (2010)

    Article  CAS  Google Scholar 

  21. S. González-Chávez, S. Arévalo-Gallegos, Q. Rascón-Cruz, Lactoferrin: structure, function and applications. Int. J. Antimicrob. Agents 33, 301.e1–301.e8 (2009)

    Article  CAS  Google Scholar 

  22. B. Lonnerdal, S. Lyer, Lactoferrin: molecular structure and biological function. Annu. Rev. Nutr. 15, 93–110 (1995)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant of state key laboratory of dairy biotechnology, People’s Republic of China (No. SKLDB2013-07) and Guangxi University Science Foundation for Doctor (XBZ160258).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanyang Li or Lijun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Lan, H., Li, Q. et al. Stability of heat-induced lactoferrin–sodium caseinate complexes: effects of pH and ionic strength. Food Measure 12, 1896–1903 (2018). https://doi.org/10.1007/s11694-018-9803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9803-7

Keywords

Navigation