Skip to main content

Advertisement

Log in

Lamellar double hydroxides as pharmaceutical excipients: a compatibility study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Lamellar double hydroxides (LDH) are a class of inorganic materials widely used as pharmaceutical ingredients. However, their use as excipients and mainly as drug carriers lacks specific research in pharmaceutical technology, as there are no publications capable of defining the behavior of these materials as components of a formulation in the presence of other pharmaceutical adjuvants already consolidated. The purpose of the study was to evaluate the excipient–excipient compatibility of calcium and aluminum LDH (LDH–CaAl) against other excipients, including colloidal silicon dioxide (aerosil®), soluble starch (SS), microcrystalline cellulose 101 (MCC), magnesium stearate (MS), hydroxypropyl-beta-cyclodextrin (HPβCD), lactose monohydrate (LACM), sodium starch glycollate (SSG), PVP-K30 and talc. Initially, absorption spectroscopy in the infrared region with Fourier transform (FTIR) and thermogravimetry and differential thermal analysis (TG/DTA) was performed. When signs of possible interactions were observed, X-ray diffraction (XRD) was performed as a complementary technique. At the end of the study, the FTIR spectra and the TG curves of LDH–CaAl and each of the isolated excipients were compared with the analysis of the binary mixtures, where there is compatibility between LDH–CaAl and all excipients tested. Although the XRD has been used to assess evidence of interactions in mixtures with stearate, lactose, PVP and talc, the joint analysis of the results proved to be satisfactory. All these pioneering results suggest, therefore, the acceptability and suitability of LDH–CaAl as a potentially scalable excipient for the development of safe and rational dosage forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Timóteo TRR, de Melo CG, de Danda LJA, Silva LCPBB, Fontes DAF, Silva PCD, et al. Layered double hydroxides of CaAl: a promising drug delivery system for increased dissolution rate and thermal stability of praziquantel. Appl Clay Sci. 2019;180(May):105197. https://doi.org/10.1016/j.clay.2019.105197.

    Article  CAS  Google Scholar 

  2. Cunha VRR, Ferreira AMC, Constatino VRL. Hidróxidos duplos lamelares: nanopartículas inorgânicas para armazenamento e liberação de espécies de interesse biológico e terapêutico. Quim Nova. 2010;33(1):159–71. https://doi.org/10.1590/S0100-40422010000100029.

    Article  CAS  Google Scholar 

  3. Bi X, Zhang H, Dou L. Layered double hydroxide-based nanocarriers for drug delivery. Pharmaceutics. 2014;6:298–332. https://doi.org/10.3390/pharmaceutics6020298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qu J, Zhang Q, Li X, He X, Song S. Mechanochemical approaches to synthesize layered double hydroxides: a review. Appl Clay Sci. 2016;119:185–92. https://doi.org/10.1016/j.clay.2015.10.018.

    Article  CAS  Google Scholar 

  5. Tyagi S, Kharkwal A, Nitu KM, Sharma R. Synthesis and characterization of layered double hydroxides containing optically active transition metal ion. Solid State Sci. 2017;63:93–102. https://doi.org/10.1016/j.solidstatesciences.2016.11.012.

    Article  CAS  Google Scholar 

  6. Shafiei SS, Solati-hashjin M, Rahim-Zadeh H, Samadikuchaksaraei A. Synthesis and characterisation of nanocrystalline Ca–Al layered double hydroxide {[Ca2Al(OH)6]NO3·nH2O}: in vitro study. Adv Appl Ceram. 2013;112(1):59–65. https://doi.org/10.1179/1743676112Y.0000000045.

    Article  CAS  Google Scholar 

  7. Meng Z, Zang Y, Zhang Q, Chen X, Liu L, Komarneni S, Lz F. Novel synthesis of layered double hydroxides (LDHs) from zinc hydroxide. Appl Surf Sci. 2017;396:799–803. https://doi.org/10.1016/j.apsusc.2016.11.032.

    Article  CAS  Google Scholar 

  8. Bendinelli EV, Rocha AC, Barcia OE, Aoki I, Margarit-Mattos I. Effects of lamellar reconstruction routes in the release of molybdate encapsulated in MgeAl layered double hydroxides. Mater Chem Phys. 2016;173:26–32. https://doi.org/10.1016/j.matchemphys.2015.12.049.

    Article  CAS  Google Scholar 

  9. Raja TSG, Jeyasubramanian K. Applied surface science tuning the superhydrophobicity of magnesium stearate decorated ZnO porous structures for self-cleaning urinary coatings. Appl Surf Sci. 2017;423:293–304. https://doi.org/10.1016/j.apsusc.2017.06.188.

    Article  CAS  Google Scholar 

  10. Varga G, Kukovecz Á, Kónya Z, Korecz L, Muráth S, Csendes Z, Peintler G, Carlson S, Sipos P, Pálinkó I. Mn(II)–amino acid complexes intercalated in CaAl-layered double hydroxide—Wellcharacterized, highly efficient, recyclable oxidation catalysts. J Catal. 2016;335:125–34. https://doi.org/10.1016/j.jcat.2015.12.023.

    Article  CAS  Google Scholar 

  11. Rocha DP, Anjos GTC, Neri TS, Tronto J, Pinto FG, Silva SG, Coelho NMM. A flow injection procedure using layered double hydroxide for on line pre-concentration of fluoride. Talanta. 2018;178:102–8. https://doi.org/10.1016/j.talanta.2017.09.015.

    Article  CAS  PubMed  Google Scholar 

  12. Narang AS, Mantri RV, Raghavan KS. Excipient compatibility and functionality. In: Developing solid oral dosage forms. Academic Press; 2017. p. 151–79.

    Chapter  Google Scholar 

  13. Oniszczuk T, Combrzy M, Id AM, Oniszczuk A. Physical assessment, spectroscopic and chemometric analysis of starch-based foils with selected functional additives. PLoS ONE. 2019;14(2):1–19.

    Article  Google Scholar 

  14. Sechi S, Chiavolelli F, Spissu N, Di Cerbo A, Canello S, Guidetti G, et al. An antioxidant dietary supplement improves brain-derived neurotrophic factor levels in serum of aged dogs: preliminary results. J Vet Med. 2015;23(2015):1–9. https://doi.org/10.1155/2015/412501].

    Article  Google Scholar 

  15. Zhang K, Xu ZP, Lu J, Tang ZY, Zhao HJ, Good DA, Wei MQ. Potential for layered double hydroxides-based, innovative drug delivery systems. Int J Mol Sci. 2014;15(5):7409–28. https://doi.org/10.3390/ijms15057409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhan T, Zhang Y, Yang Q, Deng H, Xu J, Hou W. Ultrathin layered double hydroxide nanosheets prepared from a waterin-ionic liquid surfactant-free microemulsion for phosphate removal from aquatic systems. Chem Eng J. 2016;302:459–65. https://doi.org/10.1016/j.cej.2016.05.073.

    Article  CAS  Google Scholar 

  17. Suresh K, Kumar RY, Pugazhenthi G. Processing and characterization of polystyrene nanocomposites based on CoeAl layered double hydroxide. J Sci Adv Mater Dev. 2016;1:351–61. https://doi.org/10.1016/j.jsamd.2016.07.007.

    Article  Google Scholar 

  18. Rives V, Del-Arco M, Martín C. Intercalation of drugs in layered double hydroxides and their controlled release: a review. Appl Clay Sci. 2014;88–89:239–69. https://doi.org/10.1016/j.clay.2013.12.002.

    Article  CAS  Google Scholar 

  19. Kuthati Y, Kankala RK, Lee C. Layered double hydroxide nanoparticles for biomedical applications: Current status and recent prospects. Appl Clay Sci. 2015;112–13:100–16. https://doi.org/10.1016/j.clay.2015.04.018.

    Article  CAS  Google Scholar 

  20. Chakraborty M, Mitra M, Chakraborty J. One-pot synthesis of CaAl-layered double hydroxidemethotrexate nanohybrid for anticâncer application. Bull Mater Sci. 2017;40(6):1203–11. https://doi.org/10.1007/s12034-017-1468-z.

    Article  CAS  Google Scholar 

  21. Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients, vol. 6. Springer; 2009. p. 917.

    Google Scholar 

  22. Lutfi Z, Kalim Q, Shahid A, Nawab A. Water chesnut, rice, corn starches and sodium alginate. A comparative study on the physicochemical, thermal and morphological characteristics of starches dry heating. Int J Biol Macromol. 2021;184:476–82.

    Article  CAS  PubMed  Google Scholar 

  23. Del-Arco M, Fernández A, Rives V. Solubility and release of fenbufen intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides (LDH): the effect of Eudragits S 100 covering. J Solid State Chem. 2010;183:3002–9. https://doi.org/10.1016/j.jssc.2010.10.017.

    Article  CAS  Google Scholar 

  24. Majerová D, Kulaviak L, Ruzicka M, Stepánek F, Zámostný P. Effect of colloidal silica on rheological properties of common pharmaceutical excipients. Eur J Pharm Biopharm. 2016;106:2–8.

    Article  PubMed  Google Scholar 

  25. Tian DY, Wang Y, Li SP, Li XD. Synthesis of methotrexatum intercalated layered double hydroxides by different methods: Biodegradation process and bioassay explore. Appl Clay Sci. 2015;118:87–98. https://doi.org/10.1016/j.clay.2015.09.007.

    Article  CAS  Google Scholar 

  26. Sun Y, Zhou Y, Ye X, Chen J, Wang Z. Fabrication and infrared emissivity study of hybrid materials based on immobilization of collagen on to exfoliated LDH. Mater Lett. 2008;62:2943–6. https://doi.org/10.1016/j.matlet.2008.01.080.

    Article  CAS  Google Scholar 

  27. Fontes DAF, de Lyra MAM, de Andrade JKF, de Medeiros Schver GCR, Rolim LA, da Silva TG, et al. CaAl-layered double hydroxide as a drug delivery system: effects on solubility and toxicity of the antiretroviral efavirenz. J Incl Phenom Macrocycl Chem. 2016;85(3–4):281–8. https://doi.org/10.1007/s10847-016-0627-y.

    Article  CAS  Google Scholar 

  28. El-Gizawy SA, Osman MA, Arafa MF, El MGM. Aerosil as a novel co-crystal co-former for improving the dissolution rate of hydrochlorothiazide. Int J Pharm. 2015;478:773–8.

    Article  CAS  PubMed  Google Scholar 

  29. Tiţa B, Fuliaş A, Bandur G, Marian E, Tiţa D. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed Anal. 2011;56(2):221–7. https://doi.org/10.1016/j.jpba.2011.05.017.

    Article  CAS  PubMed  Google Scholar 

  30. Jonat S, Hasenzahl S, Drechsler M, Albers P, Wagner KG, Schmidt PC. Investigation of compacted hydrophilic and hydrophobic colloidal silicon dioxides as glidants for pharmaceutical excipientes. Powder Technol. 2004;141(1–2):31–43. https://doi.org/10.1016/j.powtec.2004.01.020.

    Article  CAS  Google Scholar 

  31. Jonat S, Hasenzahl S, Gray A, Schmidt PC. Mechanism of glidants: Investigation of the effect of different colloidal silicon dioxide types on powder flow by atomic force and scanning electron microscopy. J Pharm Sci. 2004;93(10):2635–44. https://doi.org/10.1002/jps.20172.

    Article  CAS  PubMed  Google Scholar 

  32. Limpakomon S, Kulvanich P, Chatchawalsaisin J. Effect of polyoxyl 40 hydrogenated castor oil solutions on the wet mass of colloidal silicon dioxide for extrusion/spheronization. J Drug Deliv Sci Technol. 2019;53:101155. https://doi.org/10.1016/j.jddst.2019.101155.

    Article  CAS  Google Scholar 

  33. Kittipongpatana OS, Kittipongpatana N. Preparation and physicomechanical properties of coprecipitated rice starch-colloidal silicon dioxide. Powder Technol. 2012;217:377–82. https://doi.org/10.1016/j.powtec.2011.10.051.

    Article  CAS  Google Scholar 

  34. Rojek B, Wesolowski M. FTIR and TG analyses coupled with factor analysis in a compatibility study of acetazolamide with excipients. Spectrochim Acta Part A Mol Biomol Spectrosc. 2019;208:285–93. https://doi.org/10.1016/j.saa.2018.10.020.

    Article  CAS  Google Scholar 

  35. Santana CP, Fernandes FHA, Brandão DO, Silva PCD, Correia LP, Nóbrega FP, Medeiros FD, Diniz PHGD, Véras G, Medeiros ACD. Compatibility study of dry extract of Ximenia americana L. and pharmaceutical excipients used in solid state. J Therm Anal Calorim. 2018;133:603–17. https://doi.org/10.1007/s10973-017-6764-8.

    Article  CAS  Google Scholar 

  36. Sun W-J, Sun CC. A microcrystalline cellulose based drug-composite formulation strategy for developing low dose drug tablets. Int J Pharm. 2020;585:119517.

    Article  CAS  PubMed  Google Scholar 

  37. Tarchoun AF, Trache D, Klapötke TM, Krumm B, Khimeche K, Mezroua A. A promising energetic biopolymer based on azide-functionalized microcrystalline cellulose: synthesis and characterization. Carbohydr Polym. 2020;249:116820.

    Article  CAS  PubMed  Google Scholar 

  38. De Melo CM, de Medeiros Vieira ACQ, de Silva Nascimento AL, Figueirêdo CBM, Rolim LA, Soares-Sobrinho JL, De Roca Soares MF. A compatibility study of the prototype epiisopiloturine and pharmaceutical excipients aiming at the attainment of solid pharmaceutical forms. J Therm Anal Calorim. 2014;120(1):689–97. https://doi.org/10.1007/s10973-014-4163-y.

    Article  CAS  Google Scholar 

  39. Da Silveira LM, Fiorot AB, Xavier TP, Yoshida MI, de Oliveira MA. Drug-excipient compatibility assessment of solid formulations containing meloxicam. Eur J Pharm Sci. 2018;112:146–51. https://doi.org/10.1016/j.ejps.2017.11.015.

    Article  CAS  PubMed  Google Scholar 

  40. Yin H, Song P, Chen X, Huang Q, Huang H. A self-healing hydrogel based on oxidized microcrystalline cellulose and carboxymethyl chitosan as wound dressing material. Int J Biol Macromol. 2022;221:1606–17. https://doi.org/10.1016/j.ijbiomac.2022.09.060.

    Article  CAS  PubMed  Google Scholar 

  41. Mubarak MF, Zayed AM, Ahmed HÁ. Activated carbon/carborundum@microcrystalline cellulose core shell nano-composite: synthesis, characterization and application for heavy metals adsorption from aqueous solutions. Ind Crops Prod. 2022;182:114896. https://doi.org/10.1016/j.indcrop.2022.114896.

    Article  CAS  Google Scholar 

  42. Yang P, Yan M, Tian C, Huang X, Lu H, Zhou X. Solvent-free preparation of thermoplastic biomaterials from microcrystalline cellulose (MCC) through reactive extrusion. Int J Biol Macromol. 2022;217:193–202. https://doi.org/10.1016/j.ijbiomac.2022.07.006.

    Article  CAS  PubMed  Google Scholar 

  43. Haron GAS, Mahmood H, Noh HB, Goto M, Moniruzzaman M. Cellulose nanocrystals preparation from microcrystalline cellulose using ionic liquid-DMSO binary mixture as a processing medium. J Mol Liq. 2022;346:118208. https://doi.org/10.1016/j.molliq.2021.118208.

    Article  CAS  Google Scholar 

  44. Zhou F, Gu Z, Zeng Z, Tang X, Li C, Fang Z, Hu B, Chen H, Wang C, Chen S, Wu H, Wu W, Liu Y. Preparation, characterization and application of Konjac glucomannan/pullulan/microcrystalline cellulose/tea polyphenol active blend film. Food Biosci. 2022;49:101898. https://doi.org/10.1016/j.fbio.2022.101898.

    Article  CAS  Google Scholar 

  45. Graninger G, Kumar S, Garrett G, Falzon BG. Effect of shear forces on dispersion-related properties of microcrystalline cellulose-reinforced EVOH composites for advanced applications. Compos Part A Appl Sci Manuf. 2020;139:106103. https://doi.org/10.1016/j.compositesa.2020.106103.

    Article  CAS  Google Scholar 

  46. Kacso I, Rus LM, Martin F, Miclaus M, Filip X, Dan M. Solid-state compatibility studies of Ketoconazole–Fumaric acid co-crystal with tablet excipients. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09340-4.

    Article  Google Scholar 

  47. Fuliaş A, Ledeţi I, Vlase G, Popoiu C, Hegheş A, Bilanin M, et al. Thermal behaviour of procaine and benzocaine. Part II: compatibility study with some pharmaceutical excipients used in solid dosage forms. Chem Cent J. 2013;7:140. https://doi.org/10.1186/1752-153X-7-140.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moraes ANF, Silva LAD, de Oliveira MA, et al. Compatibility study of hydroxychloroquine sulfate with pharmaceutical excipients using thermal and nonthermal techniques for the development of hard capsules. J Therm Anal Calorim. 2020;140:2283–92. https://doi.org/10.1007/s10973-019-08953-8.

    Article  CAS  Google Scholar 

  49. Wang T, Potts AR, Hoag SW. Elucidating the variability of magnesium stearate and the correlations with its spectroscopic features. J Pharm Sci. 2019;108(4):1569–80. https://doi.org/10.1016/j.xphs.2018.11.041.

    Article  CAS  PubMed  Google Scholar 

  50. Delaney SP, Nethercott MJ, Mays CJ, Winquist NT, Arthur D, Calahan JL, et al. Characterization of synthesized and commercial forms of magnesium stearate using differential scanning calorimetry, thermogravimetric analysis, powder x-ray diffraction, and solid-state NMR spectroscopy. J Pharm Sci. 2016;106:1–10.

    Google Scholar 

  51. De Melo CM, Da Silva AL, De Melo KR, Da Silva PCD, de Souza ML, de Sousa ALMD, et al. In silico and in vitro study of epiisopiloturine/hydroxypropyl-β-cyclodextrin inclusion complexes obtained by different methods. J Drug Deliv Sci Technol. 2021;65:102658.

    Article  Google Scholar 

  52. Rojek B, Wesolowski M. Compatibility studies of hydrocortisone with excipients using thermogravimetric analysis supported by multivariate statistical analysis. J Therm Anal Calorim. 2017;127:543–53. https://doi.org/10.1007/s10973-016-5441-7.

    Article  CAS  Google Scholar 

  53. Rojek B, Wesolowski M. Fourier transformar espectroscopia de infravermelho apoiada por estatísticas multivariadas no estudo de compatibilidade de atenolol com excipientes. Vib Spectrosc. 2016;86:190–7. https://doi.org/10.1016/j.vibspec.2016.07.011].

    Article  CAS  Google Scholar 

  54. Alzoubi T, Martin GP, Barlow DJ, Royall PG. Stability of α-lactose monohydrate: The discovery of dehydration triggered solid-state epimerization. Int J Pharm. 2021;2021:120715.

    Article  Google Scholar 

  55. Makai Z, Bajdik J, Erős I, Pintye-Hódi K. Evaluation of the effects of lactose on the surface properties of alginate coated trandolapril particles prepared by a spray-drying method. Carbohydr Polym. 2008;74(3):712–6. https://doi.org/10.1016/j.carbpol.2008.04.029].

    Article  CAS  Google Scholar 

  56. Lopes MS, Catelani TA, Nascimento ALCS, Garcia JS, Trevisan MG. Ketoconazole: compatibility with pharmaceutical excipients using DSC and TG techniques. J Therm Anal Calorim. 2019;141:1371. https://doi.org/10.1007/s10973-019-09137-0.

    Article  CAS  Google Scholar 

  57. Smith G, Hussain A, Bukhari NI, Ermolina I. Quantification of residual crystallinity in ball milled commercially sourced lactose monohydrate by thermo-analytical techniques and terahertz spectroscopy. Eur J Pharm Biopharm. 2015;92:180–91. https://doi.org/10.1016/j.ejpb.2015.02.026.

    Article  CAS  PubMed  Google Scholar 

  58. Badal Tejedor M, Pazesh S, Nordgren N, Schuleit M, Rutland MW, Alderborn G, et al. Milling induced amorphisation and recrystallization of α-lactose monohydrate. Int J Pharm. 2018;537:140–7. https://doi.org/10.1016/j.ijpharm.2017.12.021.

    Article  CAS  PubMed  Google Scholar 

  59. Marques C, Amanda DM, Quintas C, Vieira DM, Leiz LS, Costa M, et al. A compatibility study of the prototype epiisopiloturine and pharmaceutical excipients aiming at the attainment of solid pharmaceutical forms. J Therm Anal Calorim. 2015;120:689–97. https://doi.org/10.1007/s10973-014-4163-y.

    Article  CAS  Google Scholar 

  60. Da Silva EP, Pereira MAV, De Barros Lima IP, Lima NGPB, Barbosa EG, Aragão CFS, et al. Compatibility study between atorvastatin and excipients using DSC and FTIR. J Therm Anal Calorim. 2016;123:933–9. https://doi.org/10.1007/s10973-015-5077-z.

    Article  CAS  Google Scholar 

  61. Silva JPA, Figueirêdo CBM, de Medeiros Vieira ACQ, de Lyra MAM, Rolim LA, Rolim-Neto PJ, et al. Thermal characterization and kinetic study of the antiretroviral tenofovir disoproxil fumarate. J Therm Anal Calorim. 2017;130:1643–51. https://doi.org/10.1007/s10973-017-6477-z.

    Article  CAS  Google Scholar 

  62. Allan MC, Grush E, Mauer LJ. RH-temperature stability diagram of α- and β-anhydrous and monohydrate lactose crystalline forms. Food Res Int. 2020;127:108717.

    Article  CAS  PubMed  Google Scholar 

  63. Panwar V, Thomas J, Sharma A, Chopra V, Kaushik S, Kumar A, et al. In-vitro and in-vivo evaluation of modified sodium starch glycolate for exploring its haemostatic potential. Carbohydr Polym. 2020;235:115975.

    Article  CAS  PubMed  Google Scholar 

  64. Sandero DS, Charyuly RN, Nayak P. Comparativo study of superdisintegrants using antiemetic drug as a modelo. Nitte Univ J Health Sci. 2015;5(1):40–4.

    Google Scholar 

  65. Chaves LL, Rolim LA, Gonçalves MLCM, Vieira ACC, Alves LDS, Soares MFR, et al. Study of stability and drug-excipient compatibility of diethylcarbamazine citrate. J Therm Anal Calorim. 2013;111:2179–86. https://doi.org/10.1007/s10973-012-2775-7.

    Article  CAS  Google Scholar 

  66. Du X, Yin S, Xu L, Ma J, Yu H, Wang G, et al. Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Carbohydr Polym. 2020;229:115484.

    Article  CAS  PubMed  Google Scholar 

  67. De Lima MG, Angeli VW, Colombo M, Koester LS. Investigation of the compatibility between kaempferol and excipients by thermal, spectroscopic and chemometric methods. J Therm Anal Calorim. 2019;142:1249. https://doi.org/10.1007/s10973-019-09092-w.

    Article  CAS  Google Scholar 

  68. Schver GCRM, Sun DD, Costa SPM, Silva KER, Oliveira JF, Rolim LA, et al. Solid dispersions to enhance the delivery of a potential drug candidate LPSF/FZ4 for the treatment of schistosomiasis. Eur J Pharm Sci. 2018;115:270–85.

    Article  CAS  PubMed  Google Scholar 

  69. Figueirêdo CBM, Nadvorny D, de Vieira ACQM, de Schver GCRM, Sobrinho JLS, Neto PJR, et al. Enhanced delivery of fixed-dose combination of synergistic antichagasic agents posaconazolebenznidazole based on amorphous solid dispersions. Eur J Pharm Sci. 2018;119:208–18.

    Article  PubMed  Google Scholar 

  70. Santos WM, Nóbrega FP, Andrade JC, Almeida LF, Conceição MM, Medeiros ACD, et al. Pharmaceutical compatibility of dexamethasone with excipients commonly used in solid oral dosage forms. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09753-1.

    Article  Google Scholar 

  71. Liu X, Liu X, Hu Y. Investigation of the thermal decomposition of talc. Clays Clay Miner. 2014;62:137–44. https://doi.org/10.1346/CCMN.2014.06202065.

    Article  CAS  Google Scholar 

  72. Pereira MAV, Fonseca GD, Silva-Júnior AA, de Fernandes-Pedrosa MFM, Barbosa EG, et al. Compatibility study between chitosan and pharmaceutical excipients used in solid dosage forms. J Therm Anal Calorim. 2014. https://doi.org/10.1007/s10973-014-3769-4.

    Article  Google Scholar 

  73. Gao R, Jin Y, Yang QY, et al. Study of stability and drug-excipient compatibility of estradiol and pharmaceutical excipients. J Therm Anal Calorim. 2015;120:839–45. https://doi.org/10.1007/s10973-014-4234-0.

    Article  CAS  Google Scholar 

  74. Silva CR, Fialho SL, Barbosa J, Araújo BC, Carneiro G, Sebastião RC, Freitas-Marques MBD, et al. Compatibility by a nonisothermal kinetic study of azathioprine associated with usual excipients in the product quality review process. J Braz Chem Soc. 2020;32:638–51.

    Google Scholar 

  75. Veras KS, Fachel FNS, Pittol V, Garcia KR, Bassani VL, Santos V, Henriques AT, Teixeira HF, Koester LS. Compatibility study of rosmarinic acid with excipients used in pharmaceutical solid dosage forms using thermal and non-thermal techniques. Saudi Pharm J. 2019;27(8):1138–45. https://doi.org/10.1016/j.jsps.2019.09.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

To the Department of Science and Technology—Brazilian Ministry of Health (DECIT-MS) for fostering research and to National Council for Scientific and Technological Development—Brazilian Ministry of Science, Technology and Innovation (CNPq) for funding research grants.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and development of the study. The preparation of the material, execution of the tests and analysis of the data were carried out by [LRdeMF], [LCPBBS], [IdoNGB], [MCCE] and [DFdeM]. The first draft of the manuscript was written by [LRdeMF], [NMdaS], [LPA] and [LMCV], and all authors commented on the previous versions of the manuscript. The final review was carried out by [LAR] and [PJRN]. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Laysa Creusa Paes Barreto Barros Silva.

Ethics declarations

Conflict of interest

There are no financial interests that are directly or indirectly related to the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moura Ferraz, L.R., Silva, L.C.P.B.B., de Melo, D.F. et al. Lamellar double hydroxides as pharmaceutical excipients: a compatibility study. J Therm Anal Calorim 149, 2857–2872 (2024). https://doi.org/10.1007/s10973-024-12882-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12882-6

Keywords

Navigation