Skip to main content
Log in

Encapsulation of purified lactoferrin from camel milk on calcium alginate nanoparticles and its effect on growth of osteoblasts Cell Line MG-63

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the present study, the lactoferrin (LF) that had been extracted from camel milk (through ion-exchange chromatography) has been loaded onto hydrogel particles of calcium alginate (Alg), while its effects on osteoblast cells line MG63 have been thoroughly evaluated. The extracted LF has been purified by the application of HPLC and SDS-PAGE techniques. Subsequent to being exposed to Alg (two concentrations of 0.2% and 0.5% in three pHs 6, 7, and 8), the interactions between LF and Alg have been studied by multiple spectroscopic as well as the zeta potential, and DLS particle size distribution. Fluorescence spectroscopy results have displayed the quenched emissions of proteins upon their interactions with Alg. In accordance with the obtained results, the zeta potential value of LF has faced a decrease through the formation of LF–Alg complex. Moreover, an outcome of 89.9% of loading has been perceived in both concentrations of Alg that the utilization of SEM electron microscopy. Once the loading had been confirmed, the effect of the particles that have been loaded on the MG63 cell line was put under investigation through the employment of MTT test. Taken together, it has been indicated by the achieved results that LF and Alg alone cannot cause any toxicity on the MG63 cells, while significantly increase their growth by being added to the cell culture media. The results have suggested that throughout all of the samples with evident increased cell growth, the highest interaction between LF and Alg has been observed to be at pH 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A.A. Al-Alawi, L.C. Laleye, Characterization of camel milk protein isolates as nutraceutical and functional ingredients, Collaborative Research Project SQU/UAEU (2008)

  2. H.A. Al Kanhal, Technological and nutritional aspects of dromedary camel milk. Int. Dairy J. 20, 811–821 (2010)

    Google Scholar 

  3. Y.W. Park, Bioactive Components in Milk and Dairy Products (Wiley, 2009)

    Google Scholar 

  4. P. Masson, J. Heremans, E. Schonne, Lactoferrin, an iron-binbing protein Ni neutrophilic leukocytes. J. Exp. Med. 130, 643–658 (1969)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. G. Konuspayeva, B. Faye, G. Loiseau, The composition of camel milk: a meta-analysis of the literature data. J. Food. Compost. Anal. 22, 95–101 (2009)

    CAS  Google Scholar 

  6. G. Konuspayeva, B. Faye, G. Loiseau, D. Levieux, Lactoferrin and immunoglobulin contents in camel’s milk (Camelus bactrianus, Camelus dromedarius, and Hybrids) from Kazakhstan. J. Dairy. Sci. 90, 38–46 (2007)

    CAS  PubMed  Google Scholar 

  7. L. Adlerova, A. Bartoskova, M. Faldyna, Lactoferrin: a review. Vet. Med. 53, 457–468 (2008)

    CAS  Google Scholar 

  8. S. Sharma, M. Sinha, S. Kaushik, P. Kaur, T.P. Singh, C-lobe of lactoferrin: the whole story of the half-molecule. Biochem. Res. Int. 2013, 271641 (2013)

  9. C.A. Oluk, O.B. Karaca, Functional food ingredients and nutraceuticals, milk proteins as nutraceuticals nanoscience and food industry. Nutraceuticals. Nanosci. Food. Ind. 715–759 (2016)

  10. A.M. Al-Majali, Z.B. Ismail, Y. Al-Hami, A.Y. Nour, Lactoferrin concentration in milk from camels (Camelus dromedarius) with and without subclinical mastitis. Int. J. Appl. Res Vet. Med. 5, 120 (2007)

    CAS  Google Scholar 

  11. V.M. Balcão, C.I. Costa, C.M. Matos, C.G. Moutinho, M. Amorim, M.E. Pintado, A.P. Gomes, M.M. Vila, J.A. Teixeira, Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food. Hydrocoll. 32, 425–431 (2013)

    Google Scholar 

  12. M.M. El-Loly, M.B. Mahfouz, Lactoferrin in relation to biological functions and applications: a review. Int. J. Dairy. Sci. 6, 79–111 (2011)

    CAS  Google Scholar 

  13. B. Van der Strate, L. Beljaars, G. Molema, M. Harmsen, D. Meijer, Antiviral activities of lactoferrin. Antivir. Res. 52, 225–239 (2001)

    PubMed  Google Scholar 

  14. S.A. González-Chávez, S. Arévalo-Gallegos, Q. Rascón-Cruz, Lactoferrin: structure, function and applications. Int. J. Antimicrob. Agents 33, 301–308 (2009)

    PubMed  Google Scholar 

  15. D.A. Rodríguez-Franco, L. Vázquez-Moreno, G.R.-C. Montfort, Antimicrobial mechanisms and potential clinical applications of lactoferrin. Rev. Latinoam. Microbiol. 47, 102–111 (2005)

    PubMed  Google Scholar 

  16. J.M. Torres, J.L. Concepción, J.R. Vielma, E.T. La Mucuy, de Parásitos L, Detección de lysozima and lactoferrin por western blot en ovas de Trucha arcoíris (Oncorhynchus mykiss). Mundo Pecuario 2(3), 57–59 (2006)

  17. I.A. García-Montoya, T.S. Cendón, S. Arévalo-Gallegos, Q. Rascón-Cruz, Lactoferrin a multiple bioactive protein: an overview. Biochim. Biophys. Acta. Gen. Subj. 1820, 226–236 (2012)

    Google Scholar 

  18. E.D. Weinberg, C.P., Antibiotic properties and applications of lactoferrin. Curr. Pharm. 13(8), 801–811 (2007)

    CAS  Google Scholar 

  19. M.L. Kruzel, M. Zimecki, J.K. Actor, Lactoferrin in a context of inflammation-induced pathology. Front. Immunol 8, 1438 (2017)

    PubMed  PubMed Central  Google Scholar 

  20. F. Moradian, R. Sharbafi, A. Rafiei, Lactoferrin, isolation, purification and antimicrobial effects. J. Med. Bioeng. 3(3) (2014)

  21. F. Berlutti, F. Pantanella, T. Natalizi, A. Frioni, R. Paesano, A. Polimeni, P. Valenti, Antiviral properties of lactoferrin—a natural immunity molecule. Molecules 16, 6992–7018 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. N. Bruni, M.T. Capucchio, E. Biasibetti, E. Pessione, S. Cirrincione, L. Giraudo, A. Corona, F. Dosio, Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules 21(6), 752 (2016)

    PubMed Central  Google Scholar 

  23. J.S. Mader, J. Salsman, D.M. Conrad, D.W. Hoskin, Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol. Cancer. Ther. 4, 612–624 (2005)

    CAS  PubMed  Google Scholar 

  24. X.X. Xu, H.R. Jiang, H.B. Li, T.N. Zhang, Q. Zhou, N. Liu, Apoptosis of stomach cancer cell SGC-7901 and regulation of Akt signaling way induced by bovine lactoferrin. J. Dairy. Sci 93(6), 2344–2350 (2010)

    CAS  PubMed  Google Scholar 

  25. K.-I. Fujita, E. Matsuda, K. Sekine, M. Iigo, H. Tsuda, Lactoferrin enhances Fas expression and apoptosis in the colon mucosa of azoxymethane-treated rats. Carcinog. 25, 1961–1966 (2004)

    CAS  Google Scholar 

  26. K. Golla, C. Bhaskar, F. Ahmed, A.K. Kondapi, A target-specific oral formulation of doxorubicin-protein nanoparticles: efficacy and safety in hepatocellular cancer. J. Cancer. 4, 644 (2013)

    PubMed  PubMed Central  Google Scholar 

  27. L. Safaeian, H. Zabolian, Antioxidant effects of bovine lactoferrin on dexamethasone-induced hypertension in rat. Int. Sch. Res. Notices (2014)

  28. N.D. Embleton, J.E. Berrington, W. McGuire, C.J. Stewart, S.P. Cummings, Lactoferrin: Antimicrobial Activity and Therapeutic Potential. Seminars in Fetal and Neonatal Medicine (Elsevier, 2013).

    Google Scholar 

  29. E.M. EL-Fakharany, L. Sánchez, H.A. Al-Mehdar, E.M. Redwan, Effectiveness of human, camel, bovine and sheep lactoferrin on the hepatitis C virus cellular infectivity: comparison study. Virol J 10, 199 (2013)

    Google Scholar 

  30. W. Li, S. Zhu, J. Hu, Bone regeneration is promoted by orally administered bovine lactoferrin in a rabbit tibial distraction osteogenesis model. Clin. Orthop. Relat. Res. 473(7), 2383–2393 (2015)

    PubMed  PubMed Central  Google Scholar 

  31. P. Hu, F. Zhao, J. Wang, W.-Y. Zhu, Lactoferrin attenuates lipopolysaccharide-stimulated inflammatory response and barrier impairment through modulation of NF B/MAPK/Nrf2 pathways in IPEC-J2 cells. Food Funct. 10, 8516–8526 (2020)

    Google Scholar 

  32. M. Dierick, D. Vanrompay, B. Devriendt, E. Cox, Minireview: lactoferrin, a versatile natural antimicrobial glycoprotein which modulates host innate immunity. Bioch. Cell Biol. (2020). https://doi.org/10.1139/bcb-2020-0080

    Article  Google Scholar 

  33. Y.A. Suzuki, V. Lopez, B. Lnnerdal, Lactoferrin. Cell. Mol. Life. Sci. 62(22), 2560 (2005)

    CAS  PubMed  Google Scholar 

  34. T. Kuhara, K. Yamauchi, Y. Tamura, H. Okamura, Oral administration of lactoferrin increases NK cell activity in mice via increased production of IL-18 and type I IFN in the small intestine. J. Interferon. Res 26(7), 489–499 (2006)

    CAS  Google Scholar 

  35. A. Sreedhara, R. Flengsrud, T. Langsrud, P. Kaul, V. Prakash, G.E. Vegarud, Structural characteristic, pH and thermal stabilities of apo and holo forms of caprine and bovine lactoferrins. Biometals 23(6), 1159–1170 (2020)

    Google Scholar 

  36. J.S. de S،Almeida, A.T. de Oliveira Marre, F.L. Teixeira, R.F. Boente, R.M. Domingues, G.R. de Paula, L.A. Lobo, Lactoferrin and lactoferricin B reduce adhesion and biofilm formation in the intestinal symbionts Bacteroides fragilis and Bacteroides thetaiotaomicron, Anaerobe 64, 102232 (2020)

  37. S.M. Jafari, E. Assadpoor, B. Bhandari, Y. He, Nano-particle encapsulation of fish oil by spray drying. Food. Res. Int. 41(2), 172–183 (2008)

    CAS  Google Scholar 

  38. N.J. Zuidam, E. Shimoni, Overview of Microencapsulates for Use in Food Products or Processes and Methods to Make Them, Encapsulation Technologies for Active Food Ingredients and Food Processing (Springer, 1970), pp. 3–29

    Google Scholar 

  39. K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications. Prog. Polym. Sci. 37(1), 106–126 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Y. Liang, X. Wang, M. Wu, W. Zhu, Simultaneous isolation of lactoferrin and lactoperoxidase from bovine colostrum by SPEC 70 SLS cation exchange resin. Int. J. Environ. Res. Public. Health 8(9), 3764–3776 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. A. Carpi, Progress in Molecular and Environmental Bioengineering: From Analysis and Modeling to Technology Applications (IntechOpen, 2011).

    Google Scholar 

  42. M. Raei, G. Rajabzadeh, S. Zibaei, S.M. Jafari, A.M. Sani, Nano-encapsulation of isolated lactoferrin from camel milk by calcium alginate and evaluation of its release. Int. J. Biol. Macromol. 79, 669–673 (2015)

    CAS  PubMed  Google Scholar 

  43. S.M. Jafari, Y. He, B. Bhandari, Encapsulation of nanoparticles of d-limonene by spray drying: role of emulsifiers and emulsifying techniques. Drying. Tech. 25(6), 1069–1079 (2007)

    CAS  Google Scholar 

  44. S. Braim, K. Śpiewak, M. Brindell, D. Heeg, C. Alexander, T. Monaghan, Lactoferrin-loaded alginate microparticles to target clostridioides difficile infection. J. Pharm. Sci. 108(7), 2438–2446 (2019)

    CAS  PubMed  Google Scholar 

  45. A.O. Elzoghby, M.A. Abdelmoneem, I.A. Hassanin, M.M. Abd Elwakil, M.A. Elnaggar, S. Mokhtar, J.Y. Fang, K.A. Elkhodairy, Lactoferrin, a multi-functional glycoprotein: active therapeutic, drug nanocarrier & targeting ligand. Biomaterials. 9, 120355 (2020)

  46. T.F. Pais, V.M. Szeg, O. Marques, L. MillerâFleming, P. Antas, P.C. Guerreiro, R.M. De Oliveira, B. Kasapoglu, T.F. Outeiro, The NADdependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. EMBO J. 32(19), 2603–2616 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. S. Chen, Y. Zhang, J. Qing, Y. Han, D.J. McClements, Y. Gao, Core-shell nanoparticles for co-encapsulation of coenzyme Q10 and piperine: surface engineering of hydrogel shell around protein core. Food. Hydrocoll. 103, 105651 (2020)

  48. F. Guo, W. Jiang, Single Particle Cryo-Electron Microscopy and 3-D Reconstruction of Viruses, Electron Microscopy (Springer, 2014), pp. 401–443

    Google Scholar 

  49. H. Mahaki, M. Memarpoor-Yazdi, J. Chamani, M.R. Saberi, Interaction between ropinirole hydrochloride and aspirin with human serum albumin as binary and ternary systems by multi-spectroscopic, molecular modeling and zeta potential. J. Lumin. 134, 758–771 (2013)

    CAS  Google Scholar 

  50. A. Gong, X. Zhu, Y. Hu, S. Yu, A fluorescence spectroscopic study of the interaction between epristeride and bovin serum albumine and its analytical application. Talanta 73(4), 668–673 (2017)

    Google Scholar 

  51. A. Bahri, C. Henriquet, M. Pugnire, S. Marchesseau, D. Chevalier-Lucia, Binding analysis between monomeric-casein and hydrophobic bioactive compounds investigated by surface plasmon resonance and fluorescence spectroscopy. Food. Chem. 286, 289–296 (2019)

    CAS  PubMed  Google Scholar 

  52. J. Chamani, N. Tafrishi, M. Momen-Heravi, Characterization of the interaction between human lactoferrin and lomefloxacin at physiological condition: Multi-spectroscopic and modeling description. J. Lumin. 130(7), 1160–1168 (2010)

    CAS  Google Scholar 

  53. G. Agati, P. Matteini, J. Oliveira, V. de Freitas, N. Mateus, Fluorescence approach for measuring anthocyanins and derived pigments in red wine. J. Agric. Food. Chem 61(42), 10156–10162 (2013)

    CAS  PubMed  Google Scholar 

  54. J. Huang, Z. Liu, Q. Ma, Z. He, Z. Niu, M. Zhang, L. Pan, X. Qu, J. Yu, B. Niu, Studies on the interaction between three small flavonoid molecules and bovine lactoferrin. BioMed. Res. Int. 25, 7523165 (2018)

  55. M.H. Gehlen, The centenary of the Stern–Volmer equation of fluorescence quenching: from the single line plot to the SV quenching map. J. Photochem. Photobiol C: Photochem. Rev. 42, 100338 (2020)

  56. L. He, X. Wang, B. Liu, J. Wang, Y. Sun, E. Gao, S. Xu, Study on the interaction between promethazine hydrochloride and bovine serum albumin by fluorescence spectroscopy. J. Lumin. 131(2), 285–290 (2011)

    CAS  Google Scholar 

  57. M. Wacker, A. Seubert, Determination of stability constants of strong metalâ“ligand complexes using anion or cation exchange chromatography and atomic spectrometry detection. J. Anal. At. Spectrom. 29(4), 707–714 (2014)

    CAS  Google Scholar 

  58. P. Mandal, M. Bardhan, T. Ganguly, A detailed spectroscopic study on the interaction of Rhodamine 6G with human hemoglobin. J. Photochem. Photobiol. B: Biol 99(2), 78–86 (2010)

    CAS  Google Scholar 

  59. F. Ge, C. Chen, D. Liu, B. Han, X. Xiong, S. Zhao, Study on the interaction between theasinesin and human serum albumin by fluorescence spectroscopy. J. Lumin. 130(1), 168–173 (2010)

    CAS  Google Scholar 

  60. Y.-Q. Wang, H.-M. Zhang, G.-C. Zhang, W.-H. Tao, Z.-H. Fei, Z.-T. Liu, Spectroscopic studies on the interaction between silicotungstic acid and bovine serum albumin. J. Pharm. Biomed. Anal. 43(5), 1869–1875 (2007)

    CAS  PubMed  Google Scholar 

  61. H.-M. Zhang, Y.-Q. Wang, Q.-H. Zhou, G.-L. Wang, Molecular interaction between phosphomolybdate acid and bovine hemoglobin. J. Mol. Struct. 921(1–3), 156–162 (2009)

    CAS  Google Scholar 

  62. P.D. Ross, S. Subramanian, Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20(11), 3096–3102 (1981)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support of the Research Council of the Islamic Azad University, Mashhad Branch, and Research Department of Razi Institute Northeast Branch is gratefully acknowledged. The authors thank Dr. Nadia Ljungberg for the English editing

Funding

Funding was provided by Mashhad Branch, Islamic Azad University.

Author information

Authors and Affiliations

Authors

Contributions

VR, SZ, ZA-T, and JC designed the research study. VR, PM, and FB-M performed the research and collected the data. SZ and JC analyzed the data. VR, PM, FB-M, and ZA-T wrote the initial draft of the manuscript. SZ and JC revised the manuscript. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Saeid Zibaee or Jamshidkhan Chamani.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Ethical approval

There is none to be disclosed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyhani, V., Zibaee, S., Mokaberi, P. et al. Encapsulation of purified lactoferrin from camel milk on calcium alginate nanoparticles and its effect on growth of osteoblasts Cell Line MG-63. J IRAN CHEM SOC 19, 131–145 (2022). https://doi.org/10.1007/s13738-021-02295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02295-9

Keywords

Navigation