Skip to main content
Log in

Effect of Gd2O3 Addition on High-Temperature Oxidation Performance of NiCoCrAlYTa Coatings

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Herein, the effects of Gd2O3 on the laser cladding NiCoCrAlYTa coatings in terms of microstructure, phase structures, high temperature oxidation behaviors were investigated. The results showed that the addition of Gd2O3 changed the composition of coating phases, promoted homogeneous phase distribution, reduced porosity and improved coating density. During oxidation at 1100 °C for 150 h, the increase in the content of added Gd2O3 (at mass fractions of 0, 0.5, 1, 2, 5 and 10%) exhibited an initial inhibitory and then increased effect on the weight-gain rate of the coatings. Overall, 1% Gd2O3 addition resulted in the greatest improvement in the oxidation resistance of the coatings, with 49.58% decreases in oxidation kinetic constants, respectively, compared with those of unmodified coatings. However, at a Gd2O3 content of 10%, the thermally grown oxide on the coating surface exhibited large flaking areas. The high-temperature oxidation kinetic parameters of the coatings exhibited an inverted parabolic form with increasing Gd2O3 content. The higher Gd2O3 content led to the formation of excessive oxygen diffusion channels along grain boundaries, which is the reason for the decrease in the anti-oxidant performance of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No data was used for the research described in the article.

References

  1. A. Karimi, R. Soltani, M. Ghambari, and H. Fallandoost, High Temperature Oxidation Resistance of Plasma Sprayed and Surface Treated YSZ Coating on Hastelloy X, Surf. Coat. Technol., 2017, 321, p 378-385. https://doi.org/10.1016/j.surfcoat.2017.05.002

    Article  CAS  Google Scholar 

  2. E. Hejrani, D. Sebold, W.J. Nowak, G. Mauer, D. Naumenko, R. Vassen, and W.J. Quadakkers, Isothermal and Cyclic Oxidation Behavior of Free Standing MCrAlY Coatings Manufactured by High-Velocity Atmospheric Plasma Spraying, Surf. Coat. Technol., 2017, 313, p 191-201. https://doi.org/10.1016/j.surfcoat.2017.01.081

    Article  CAS  Google Scholar 

  3. B.P. Zhang, L.L. Wei, L.H. Gao, H.B. Guo, and H.B. Xu, Microstructural Characterization of PS-PVD Ceramic Thermal Barrier coatings with Quasi-Columnar Structures, Surf. Coat. Technol., 2017, 311, p 199-205. https://doi.org/10.1016/j.surfcoat.2016.12.117

    Article  CAS  Google Scholar 

  4. Y.J. Guan, X.F. Cui, D. Chen, W.N. Su, Y. Zhao, J. Li, and G. Jin, Realizing High Strength and Toughness of Gradient High-Entropy Alloy Coating by In-Situ Interface Reaction of FeCoCrNi/FeCoCrAl, Surf. Coat. Technol., 2023, 464, 129569. https://doi.org/10.1016/j.surfcoat.2023.129569

    Article  CAS  Google Scholar 

  5. R. Darolia, Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects, Int. Mater. Rev., 2013, 58(6), p 315-348. https://doi.org/10.1179/1743280413Y.0000000019

    Article  CAS  Google Scholar 

  6. J.A. Haynes, Y. Zhang, K.M. Cooley, L. Walker, K.S. Reeves, and B.A. Pint, High-Temperature Diffusion Barriers for Protective Coatings, Surf. Coat. Technol., 2004, 153, p 188-189. https://doi.org/10.1016/j.surfcoat.2004.08.066

    Article  CAS  Google Scholar 

  7. J. Nie, Y. Li, S. Liu, H. Zhang, R. Duan, S. Wei, J. Cai, and Q. Guan, Evolution of Microstructure of Al Particle-Reinforced NiCoCrAlY Coatings Fabricated on 304 Stainless Steel Using Laser Cladding, Mater. Lett., 2021, 289, 129431. https://doi.org/10.1016/j.matlet.2021.129431

    Article  CAS  Google Scholar 

  8. W. Brandl, H.J. Grabke, D. Toma, and J. Krüger, The Oxidation Behaviour of Sprayed MCrAlY Coatings, Surf. Coat. Technol., 1996, 86-87, p 41-47. https://doi.org/10.1016/S0257-8972(96)03039-3

    Article  CAS  Google Scholar 

  9. A. Ullah, A. Khan, Z.B. Bao, Y.F. Yang, M.M. Xu, S.L. Zhu, and F.H. Wang, Temperature Effect on Early Oxidation Behavior of NiCoCrAlY Coatings: Microstructure and Phase Transformation, Sin-Engl., 2022, 35, p 975-984. https://doi.org/10.1007/s40195-021-01310-5

    Article  CAS  Google Scholar 

  10. H. Nickel, D. Clemens, and W.J. Quadakkers, Development of NiCrAlY Alloys for Corrosion Resistant Coatings and Thermal Barrier Coatings of Gas Turbine Components, J. Press. Vess., 1999, 121(4), p 384-387. https://doi.org/10.1115/1.2883719

    Article  CAS  Google Scholar 

  11. W.R. Chen, X. Wu, B.R. Marple, and L. Chen, The Growth and Influence of Thermally Grown Oxide in a Thermal Barrier Coating, Surf. Coat. Technol., 2006, 201, p 1074. https://doi.org/10.1007/s11783-011-0280-z

    Article  CAS  Google Scholar 

  12. H.R. Yao, Z.B. Bao, M.L. Shen, and F. Wang, A magnetron Sputtered Micro-Crystalline β-NiAl Coating for SC Superalloys. Part II. Effects of a NiCrO Diffusion Barrier on Oxidation Behavior at 1100 °C, Appl. Surf. Sci., 2017, 407, p 485. https://doi.org/10.1016/j.apsusc.2017.02.245

    Article  CAS  Google Scholar 

  13. C.V. Cojocaru, M. Aghasibeig, and E. Irissou, NiCoCrAlX (X = Y, Hf and Si) Bond Coats by Cold Spray for High Temperature Applications, J. Therm. Spray Tech., 2022, 31, p 176-185. https://doi.org/10.1007/s11666-022-01322-2

    Article  CAS  Google Scholar 

  14. S. Stecura, Advanced Thermal Barrier System Bond Coatings for Use on Nickel-, Cobalt- and Iron-Base Alloy Substrates, Thin Solid Films, 1986, 136(2), p 241-256. https://doi.org/10.1016/0040-6090(86)90283-X

    Article  CAS  Google Scholar 

  15. R.H. Thielemann, High Temperature Tantalum Base Alloys, Google Patents, 1959.

  16. J.G. Chen, S.T. Zhang, K.P. Du, and P.X. Ouyang, Effect of Ta on High Temperature Performance of NiCoCrAlY Coatings, Therm. Spray Technol., 2019, 11(3), p 38-43. https://doi.org/10.3969/j.issn.1674-7127.2020.02.008

    Article  Google Scholar 

  17. D.B. Lee, J.H. Ko, and J.H. Yi, Characterization of Oxide Scales Formed on High-Velocity Oxyfuel-Sprayed Ni-Co-Cr-Al-Y +ReTa Coatings, J. Therm. Spray Tech., 2005, 14(3), p 315-320. https://doi.org/10.1361/105996305X59396

    Article  CAS  Google Scholar 

  18. I.M. Allam, D.P. Whittle, and J. Stringer, The Oxidation Behavior of CoCrAl Systems Containing Active Element Additions, Oxid. Metals, 1978, 12(1), p 35-66.

    Article  CAS  Google Scholar 

  19. H.Z. Yang, J.P. Zou, Q. Shi, D. Wang, M.J. Dai, S.S. Lin, X.X. Chen, W. Wang, and X.P. Xia, Comprehensive Study on the Microstructure Evolution and Oxidation Resistance Performance of NiCoCrAlYTa Coating During Isothermal Oxidation at High Temperature, Corros. Sci., 2020, 175, 108889. https://doi.org/10.1016/j.corsci.2020.108889

    Article  CAS  Google Scholar 

  20. R. Goti, M. Bétaille-Francoual, E. Hourcastagné, B. Viguier, and F. Crabos, Isothermal Oxidation Behaviour of NiCoCrAlYTa Coatings Produced by HVOF Spraying and Tribomet Process, Oxid. Met., 2014, 81, p 105-113. https://doi.org/10.1007/s11085-013-9422-y

    Article  CAS  Google Scholar 

  21. X. Liu, Y. An, X.Q. Zhao, S.J. Li, W. Deng, G.L. Hou, Y.P. Ye, H.D. Zhou, and J.M. Chen, Hot Corrosion Behavior of NiCoCrAlYTa Coating Deposited on Inconel Alloy Substrate by High Velocity oxy-fuel Spraying Upon Exposure to Molten V2O5-Containing Salts, Corros. Sci., 2016, 112, p 696-709. https://doi.org/10.1016/j.corsci.2016.09.010

    Article  CAS  Google Scholar 

  22. M. Daroonparvar, M.S. Hussain, M.A. Yajid, and Mat, The role of Formation of Continues Thermally Grown Oxide Layer on the Nanostructured NiCrAlY Bond Coat During Thermal Exposure in Air, Appl. Surf. Sci., 2012, 261, p 287-297. https://doi.org/10.1016/j.apsusc.2012.08.002

    Article  CAS  Google Scholar 

  23. W.R. Chen, X. Wu, B.R. Marple, and P.C. Patnaik, Oxidation and Crack Nucleation/growth in an Air-Plasma-Sprayed Thermal Barrier Coating with NiCrAlY Bond Coat, Surf. Coat. Technol., 2005, 197, p 109-115. https://doi.org/10.1016/j.corsci.2013.10.021

    Article  CAS  Google Scholar 

  24. D.R. Clarke and C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coatings, Annu. Rev. Mater. Res., 2003, 33, p 383-417. https://doi.org/10.1146/annurev.matsci.33.011403.113718

    Article  CAS  Google Scholar 

  25. A. Ebach-Stahl, U. Schulz, R. Swadba, and A.U. Munawar, Lifetime Improvement of EB-PVD 7YSZ TBCs by Doping of Hf or Zr in NiCoCrAlY Bond Coats, Corros. Sci., 2020, 181, 109205. https://doi.org/10.1016/j.corsci.2020.109205

    Article  CAS  Google Scholar 

  26. W.H. Duan, P. Song, C. Li, T.H. Huang, Z.H. Ge, J. Feng, and J.S. Lu, Effect of Water Vapor on the Failure Behavior of Thermal Barrier Coating with Hf-Doped NiCoCrAlY Bond Coating, J. Mat. Res., 2019, 34, p 2653-2663. https://doi.org/10.1557/jmr.2019.51

    Article  CAS  Google Scholar 

  27. H.F. Liu and W.X. Chen, Cyclic Oxidation Behaviour of Electrodeposited Ni3Al-CeO2 Base Coatings at 1050 °C, Corr. Sci., 2007, 49, p 3453-3478. https://doi.org/10.1016/j.corsci.2007.05.002

    Article  CAS  Google Scholar 

  28. Y. Hao, U. Shigeharu, H. Shigenari, and O. Naoko Hori, Effect of Cr and Y2O3 on the Oxidation Behavior of Co-Based Oxide Dispersion Strengthened Super Alloys at 900°C, Corr. Sci., 2017, 127, p 147-156. https://doi.org/10.1016/.corsci.2017.08.013

    Article  Google Scholar 

  29. L.V. Ramanathan, M.F. Pillis, and S.M.C. Fernandes, Role of Rare Earth Oxide Coatings on Oxidation Resistance of Chromia-Forming Alloys, J. Mat. Sci., 2008, 43, p 530-535. https://doi.org/10.1007/s10853-007-1855-8

    Article  CAS  Google Scholar 

  30. S.M.C. Fernandes and L.V. Ramanathan, Cyclic Oxidation Behaviour of Rare Earth Oxide Coated Fe-20Cr Alloys, Surf. Eng., 2006, 22, p 248-252. https://doi.org/10.1179/174329406X122847

    Article  CAS  Google Scholar 

  31. F.I. Wei and F.H. Stott, The development of Cr2O3 Scales on Iron-Chromium Alloys Containing Reactive Elements, Corr. Sci., 1989, 89, p 839-861. https://doi.org/10.1016/0010-938X(89)90057-7

    Article  Google Scholar 

  32. S.M.C. Fernandes and L.V. Ramanathan, Effect of Surface Deposited Rare Earth Oxide Gel Characteristics on Cyclic Oxidation Behavior of Fe20-Cr Alloys, Mat. Res., 2006, 9, p 199-203. https://doi.org/10.1590/S1516-14392006000200016

    Article  CAS  Google Scholar 

  33. D. Wang, H.B. Guo, H.B. Xu, S.K. Gong, and H. Peng, Effect of Sm, Gd, Yb, Sc and Nd as Reactive Elements on Oxidation Behaviour of β-NiAl at 1200 °C, Corr. Sci., 2014, 78, p 369-377. https://doi.org/10.1016/j.corsci.2013.10.021

    Article  CAS  Google Scholar 

  34. D.W. Yun, S.M. Seo, H.W. Jeong, and Y.S. Yoo, The Effect of Gd Addition on the Cyclic Oxidation Behavior and Creep Life of Alumina-Forming Ni-Based Superalloy, Corros. Sci., 2020, 170, 108694. https://doi.org/10.1016/j.corsci.2020.108694

    Article  CAS  Google Scholar 

  35. W. Wang, C.L. Li, J. Li, J.H. Fan, and X.Y. Zhou, Effect of Gadolinium Doping on Phase Transformation and Microstructure of Gd2O3-Y2O3-ZrO2 Composite Coatings Prepared by Electrophoretic Deposition, J. Rare Earths, 2013, 31, p 289-295. https://doi.org/10.1016/S1002-0721(12)60274-9

    Article  CAS  Google Scholar 

  36. A. Gil, J. Wyrwa and T. Brylewski, Improving the Oxidation Resistance and Electrical Properties of Ferritic Stainless Steels for Application in SOFC Interconnects, Oxid. Met., 2015, 85, p 151-169. https://doi.org/10.1007/s11085-015-9605-9

    Article  CAS  Google Scholar 

  37. L.V. Ramanathan, Role of Rare-Earth Elements on High Temperature Oxidation Behavior of Fe-Cr, Ni-Cr Ni-Cr-Al Alloys, 1993, 35, p 871-878. https://doi.org/10.1016/0010-938X(93)90303-X

    Article  Google Scholar 

  38. H.Y. Wang, D.W. Zuo, X.F. Li, K.M. Chen, and M.M. Huang, Effects of CeO2 Nanoparticles On microstructure and Properties of Laser Cladded NiCoCrAlY Coatings, J. Rare Earths, 2010, 28, p 246-250. https://doi.org/10.1016/s1002-0721(09)60089-2

    Article  CAS  Google Scholar 

  39. K.L. Wang, Q.B. Zhang, M.L. Sun, X.G. Wei, and Y.M. Zhu, Rare Earth Elements Modification of Laser-Clad Nickel-Based Alloy Coatings, Appl. Surf. Sci., 2001, 174, p 191-200. https://doi.org/10.1016/s1002-0721(09)60089-2

    Article  CAS  Google Scholar 

  40. R. Cueff, H. Buscail, E. Caudron, F. Riffard, C. Issartel, and S.E. Messki, Effect of Reactive Element Oxide Coating on the High Temperature Oxidation Behaviour of FeCrAl Alloys, Appl. Surf. Sci., 2004, 229, p 233-241. https://doi.org/10.1016/j.apsusc.2004.01.072

    Article  CAS  Google Scholar 

  41. J. Rong, X. Wang, Y.N. Zhang, J. Feng, Y. Zhong, X.H. Yu, and Z.L. Zhan, Al2O3/FeAl Interfacial Behaviors by Yttrium Doping in High Temperature Oxidation, Ceram. Int., 2019, 45, p 22273-22280. https://doi.org/10.1016/j.ceramint.2019.07.253

    Article  CAS  Google Scholar 

  42. S. Chevalier, C. Issartel, R. Cueff, H. Buscaif, G. Strehl, and G. Borchardt, Influence of the Mode of Introduction of a Reactive Element on the High Temperature Oxidation Behavior of an Alumina-Forming Alloy. Part III: The Use of Two Stage Oxidation Experiments and In Situ x-ray Diffraction to Understand the Oxidation Mechanisms, Werkst, 2006, 27, p 476-783. https://doi.org/10.1002/maco.200503943

    Article  CAS  Google Scholar 

  43. R. Lowrie and D.H. Boone, Composite Coatings of CoCrAlY Plus Platinum, Thin Solid Films, 1977, 45(3), p 491-498. https://doi.org/10.1016/0040-6090(77)90236-x

    Article  CAS  Google Scholar 

  44. R. Eriksson, H. Brodin, S. Johansson, L. Östergren, and X.H. Li, Influence of Isothermal and Cyclic Heat Treatments on the Adhesion of Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2011, 205, p 5422-5429. https://doi.org/10.1016/j.surfcoat.2011.06.007

    Article  CAS  Google Scholar 

  45. D.R. Clarke, the Lateral Growth Strain Accompanying the Formation of a Thermally Grown Oxide, Acta Mater., 2003, 51, p 1393-1407. https://doi.org/10.1016/S1359-6454(02)00532-3

    Article  CAS  Google Scholar 

  46. V.K. Tolpygo, D.R. Clarke, and K.S. Murphy, Oxidation-Induced Failure of EB-PVD Thermal Barrier Coatings, Surf. Coat. Technol., 2001, 146, p 124-131. https://doi.org/10.1016/S0257-8972(01)01482-7

    Article  Google Scholar 

  47. R. Vaßen, S. Giesen, and D. Stver, Lifetime of Plasma-Sprayed Thermal Barrier Coatings: Comparison of Numerical and Experimental Results, J. Therm. Spray Technol., 2009, 18, p 835-845. https://doi.org/10.1007/s11666-009-9389-z

    Article  CAS  Google Scholar 

  48. D. Naumenko, R. Pillai, A. Chyrkin, and W.J. Ouadakkers, Overview on Recent Developments of Bond Coats for Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2017, 26(8), p 1743-1757. https://doi.org/10.1007/s11666-017-0649-2

    Article  CAS  Google Scholar 

  49. K.P. Jonnalagadda, R. Eriksson, X.H. Li, and R.L. Peng, Thermal Barrier Coatings: Life Model Development and Validation, Surf. Coat. Technol., 2019, 362, p 293-301. https://doi.org/10.1016/i.surfcoat.2019.01.117

    Article  CAS  Google Scholar 

  50. N.I. Jamnapara, S. Frangini, J. Alphonsa, N.L. Chauhan, and S. Mukherjee, Comparative Analysis of Insulating Properties of Plasma and Thermally Grown Alumina Films on Electrospark Aluminide Coated 9Cr Steels, Surf. Coat. Technol., 2015, 266, p 146-150. https://doi.org/10.1016/jsurfcoat.2015.08.019

    Article  CAS  Google Scholar 

  51. S.M. Xie, M.J. Dai, S.S. Lin, Q. Shi, C. Song, H.J. Hou, W.Q. Qiu, and Y.C. Wang, Effect of Bias Voltage on the Oxidation Resistance of NiCoCrAlYTa Coatings Prepared by Arc Ion Plating, Corros. Sci., 2019, 147, p 330-341.

    Article  CAS  Google Scholar 

  52. B.C. Zhang, K.Y. Chen, N. Baddour, and P.C. Patnaik, Failure and Life Evaluation of EB-PVD Thermal Barrier Coatings Using Temperature-Process-Dependent Model Parameters, Corr. Sci., 2019, 156, p 1-9. https://doi.org/10.1016/j.corsci.2019.04.020

    Article  CAS  Google Scholar 

  53. X.Z. Gao, K. Yuan, Y.G. Yu, Z.Q. Li, J.M. Liu, K.P. Du, D.M. Zhang, and H.B. Sun, Influence of Oxidation Temperature on the Microstructure Evolution of NiCoCrAlYTa Powders, Vacuum, 2019, 163, p 255-262. https://doi.org/10.1016/i.vacuum.2019.02.016

    Article  CAS  Google Scholar 

  54. L. Proville and B. Bako, Dislocation Depinning from Ordered Nanophases in a Model fcc Crystal: from Cutting Mechanism to Orowan Looping, Acta Mater., 2010, 58, p 5565-5571. https://doi.org/10.1016/j.actamat.2010.06.018

    Article  CAS  Google Scholar 

  55. Y.S. Tian, C.Z. Chen, L.X. Chen, and Q.H. Huo, Effect of RE Oxides on the Microstructure of the Coatings Fabricated on Titanium Alloys by Laser Alloying Technique, Scr. Mater., 2006, 54, p 847-852. https://doi.org/10.1016/j.scriptamat.2005.11.011

    Article  CAS  Google Scholar 

  56. D. Mercier, B.D. Gauntt, and M. Brochu, Thermal Stability and Oxidation Behavior of Nanostructured NiCoCrAlY Coatings, Surf. Coat. Technol., 2011, 205, p 4162-4168. https://doi.org/10.1016/j.surfcoat.2011.03.005

    Article  CAS  Google Scholar 

  57. F. Ghadami, A.S.R. Aghdam, and S. Ghadami, Microstructural Characteristics and Oxidation Behavior of the Modified MCrAlX Coatings: A Critical Review, Vacuum, 2021, 185, 109980. https://doi.org/10.1016/j.vacuum.2020.109980

    Article  CAS  Google Scholar 

  58. H.E. Evans and M.P. Taylor, Diffusion Cells and Chemical Failure of MCrAlY Bond Coats in Thermal-Barrier Coating Systems, Oxid. Met., 2001, 55, p 17-34. https://doi.org/10.1023/A:1010369024142

    Article  CAS  Google Scholar 

  59. A.G. Evans, M.Y. He, and J.W. Hutchinson, Mechanics-Based Scaling Laws for the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46, p 249-271. https://doi.org/10.1016/S0079-6425(00)00007-4

    Article  CAS  Google Scholar 

  60. Y.H. Zhou, X.F. Zhao, C.S. Zhao, W. Hao, X. Wang, and P. Xiao, The Oxidation Performance for Zr-doped Nickel Aluminide Coating by Composite Electrodepositing and Pack Cementation, Corros. Sci., 2017, 123, p 103-115. https://doi.org/10.1016/j.corsci.2017.04.008

    Article  CAS  Google Scholar 

  61. K. Yuan, R.L. Peng, X.H. Li, S. Johansson, and Y.D. Wang, Some Aspects of Elemental Behaviour in HVOF MCrAlY Coatings in High-Temperature Oxidation, Surf. Coat. Technol., 2015, 261, p 86-101. https://doi.org/10.1016/j.surfcoat.2014.11.053

    Article  CAS  Google Scholar 

  62. L.P. Jiang, X.F. Cui, G. Jin, Z.M. Tian, X. Wen, H.L. Tian, and S. Wang, Design and Characterization of In-Situ TiB Reinforced TiB/Ti50Zr25Al15Cu10 Non-equiatomic Medium-Entropy Alloy Composite Coating on Magnesium Alloy by Laser Cladding, Opt. Laser Technol., 2022, 156, 108494. https://doi.org/10.1016/j.optlastec.2022.108494

    Article  CAS  Google Scholar 

  63. J. Toscano, R. Vassen, A. Gil, M. Subanovic, D. Naumenko, L. Singhelser, and W. Quadakkers, Parameters Affecting TGO Growth and Adherence on MCrAlY-bond Coats for TBCs, Surf. Coat. Tech., 2006, 201, p 3906-3910. https://doi.org/10.1016/j.surfcoat.2006.07.247

    Article  CAS  Google Scholar 

  64. D. Naumenko, B.A. Pint, and W.J. Quadakkers, Current Thoughts on Reactive Element Effects in Alumina-Forming Systems: in Memory of John STRINGER, Oxid. Met., 2016, 86, p 1-43. https://doi.org/10.1007/s11085-016-9625-0

    Article  CAS  Google Scholar 

  65. J. Lu, H. Zhang, Y. Chen, X.F. Zhao, F.W. Guo, and P. Xiao, Effect of Microstructure of a NiCoCrAlY Coating Fabricated by High-Velocity air Fuel on the Isothermal Oxidation, Corros. Sci., 2019, 159, 108126. https://doi.org/10.1016/j.corsci.2019.108126

    Article  CAS  Google Scholar 

  66. B. Cheng, N. Yang, Q. Zhang, M. Zhang, Y.M. Zhang, L. Chen, G.J. Yang, C.X. Li, and C.J. Li, Sintering Induced the Failure Behavior of Dense Vertically Crack and LAMELLAR Structured TBCs with Equivalent Thermal Insulation Performance, Ceram. Int., 2017, 43, p 15459-15465. https://doi.org/10.1016/j.ceramint.2017.08.092

    Article  CAS  Google Scholar 

  67. S. Li, Y.L. Di, H.D. Wang, Y.C. Zhao, L. Wang, and L.H. Dong, Structural Characteristics and High-Temperature Oxidation Behaviour of Nano-HfO2-Doped Thermal Barrier Coatings, Ceram. Int., 2022, 48, p 5229-5238. https://doi.org/10.1016/j.ceramint.2021.11.063

    Article  CAS  Google Scholar 

  68. J. He, Z. Zhang, H. Peng, S.K. Gong, and H.B. Guo, The Role of Dy and Hf Doping on Oxidation Behavior of Two-Phase (γ′+β) Ni-Al Alloys, Corros. Sci., 2015, 98, p 699-707. https://doi.org/10.1016/j.corsci.2015.06.016

    Article  CAS  Google Scholar 

  69. R. Liu, H.L. Sun, Q.Q. Guo, M.J. Jiang, and X.S. Jiang, A Study of the Oxidation of Gd-Doped FeCrAl in 1000 Degrees C Steam Environments, J. Mater. Eng. Perform., 2023, 32, p 978-992. https://doi.org/10.1007/s11665-022-07161-0

    Article  CAS  Google Scholar 

  70. H.Z. Yang, J.P. Zou, Q. Shi, M.J. Dai, S.S. Lin, W. Du, and L. Lv, Analysis of the Microstructural Evolution and Interface Diffusion Behavior of NiCoCrAlYTa Coating in High Temperature Oxidation, Corros. Sci., 2019, 153, p 162-169. https://doi.org/10.1016/j.corsci.2019.03.022

    Article  CAS  Google Scholar 

  71. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, and R.S. Smart, Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 2011, 257, p 2717-2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  72. Y.Z. Jing, X.F. Cui, D.C. Liu, Y.C. Fang, Z. Chen, A.Y. Liu, X.H. Wang, and G. Jin, The Effects of Lattice Distortion Magnitude on the Oxidation Performance of laser-Cladded NiCoCr-M (M=Al, Fe, Si) Multi-Principal Element Alloy Coatings Under High Temperature Exposure, Surf. Inter., 2022, 33, 102305. https://doi.org/10.1016/j.surfin.2022.102305

    Article  CAS  Google Scholar 

  73. X.B. Qi and S.J. Zhu, Effect of CeO2 Addition on Thermal Shock Resistance of WC-12%Co Coating Deposited on Ductile Iron by Electric Contact Surface Strengthening, Appl. Surf. Sci., 2015, 349, p 792-797. https://doi.org/10.1016/j.apsusc.2015.05.064

    Article  CAS  Google Scholar 

  74. C.V. Robino, Representation of Mixed Reactive Gases on Free Energy (Ellingharn-Richardson) Diagrams, Met. Mat. Trans. B, 1996, 27, p 65-69. https://doi.org/10.1007/BF02915078

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 52175163).

Author information

Authors and Affiliations

Authors

Contributions

Anying Liu: Methodology, experiments designed, writing-original draft, revised manuscript. Xiufang Cui and Guo Jin: Supervision, funding acquisition. Yongzhi Jing, Dianchao Liu, and Xinhe Wang: Conduct experiments, characterization. Zhijia Zhang, Zhuo Chen, and Qicheng Li: Analyzed, specially.

Corresponding authors

Correspondence to Xiufang Cui or Guo Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Cui, X., Jing, Y. et al. Effect of Gd2O3 Addition on High-Temperature Oxidation Performance of NiCoCrAlYTa Coatings. J Therm Spray Tech 33, 1100–1116 (2024). https://doi.org/10.1007/s11666-024-01757-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-024-01757-9

Keywords

Navigation