Skip to main content
Log in

A Study of the Oxidation of Gd-Doped FeCrAl in 1000 °C Steam Environments

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigated the isothermal oxidation behavior of FeCrAl-(0, 1, 2, 4) wt.% Gd alloys when prepared by spark plasma sintering at 1000 °C in steam. When doped with Gd, the FeCrAl alloy oxidation kinetics significantly improved and showed excellent resistance to high-temperature steam oxidation. The 1.0 Gd alloy gained the least mass (0.32 mg/cm2) and the oxide scale was thinnest (1.9 ± 0.2 μm) after the FeCrAl alloy was treated in steam for 100 h. However, when Gd content is more than 1 wt.%, the oxidation resistance of the alloy decreases at high temperature, but it is still better than that of the alloy without Gd. The oxide layer of FeCrAl-(0, 1, 2, 4) wt.% Gd alloy was mainly Al2O3 and Gd doping slightly inhibited growth in Al2O3 oxide layer. Gd-rich particles were dispersed in the matrix, reducing the diffusion rate of oxygen and inhibiting the outward diffusion of Al. This reduced the growth rate and also the spallation rate of the oxide skin on the FeCrAl alloy. Gd reduced the oxidation rate of the alloy by changing the diffusion process of the oxide layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G.M. Castelluccio, W.D. Musinski, and D.L. McDowell, Recent Developments in Assessing Microstructure-Sensitive Early Stage Fatigue of Polycrystals, Curr. Opin. Solid State Mater. Sci., 2014, 18(4), p 180–187.

    Article  CAS  Google Scholar 

  2. Y. Yamamoto, B.A. Pint, K.A. Terrani, K.G. Field, Y. Yang, and L.L. Snead, Development and Property Evaluation of Nuclear Grade Wrought FeCrAl Fuel Cladding for Light Water Reactors, J. Nucl. Mater., 2015, 467, p 703–716.

    Article  CAS  Google Scholar 

  3. D. Pan, R. Zhang, H. Wang, C. Lu, and Y. Liu, Formation and Stability of Oxide Layer in FeCrAl Fuel Cladding Material Under High-Temperature Steam, J. Alloys Compd., 2016, 684, p 549–555.

    Article  CAS  Google Scholar 

  4. D. Pan, R. Zhang, H. Wang, Y. Xu, and H. Wang, In Steam Short-Time Oxidation Kinetics of FeCrAl Alloys, J. Mater. Eng. Perform., 2018, 27(12), p 6407–6414.

    Article  CAS  Google Scholar 

  5. J. Engkvist, S. Canovic, F. Liu, H. Götlind, J.E. Svensson, L.G. Johansson, M. Olsson, and M. Halvarsson, Oxidation of FeCrAl Foils at 500-900 °C in Dry O2 and O2 with 40 % H2O, Mater. High Temp., 2014, 26(2), p 199–210.

    Article  Google Scholar 

  6. K. Hellström, N. Israelsson, N. Mortazavi, S. Canovic, M. Halvarsson, J.E. Svensson, and L.G. Johansson, Oxidation of a Dispersion-Strengthened Powder Metallurgical FeCrAl Alloy in the Presence of O2 at 1100 °C: the Influence of Water Vapour, Oxid. Met., 2015, 83(5–6), p 533–558.

    Article  Google Scholar 

  7. H. Al-Badairy and G.J. Tatlock, The Influence of the Moisture Content of the Atmosphere on Alumina Scale Formation and Growth During High Temperature Oxidation of PM2000, Mater. High Temp., 2014, 17(1), p 133–137.

    Article  Google Scholar 

  8. K.A. Unocic, E. Essuman, S. Dryepondt, and B.A. Pint, Effect of Environment on the Scale Formed on Oxide Dispersion Strengthened FeCrAl at 1050 °C and 1100 °C, Mater. High Temp., 2014, 29(3), p 171–180.

    Article  Google Scholar 

  9. W.J. Quadakkers, A. Elschner, W. Speier, and H. Nickel, Composition and Growth Mechanisms of Alumina Scales on FeCrAl-Based Alloys Determined by SNMS, Appl. Surf. Sci., 1991, 52(4), p 271–287.

    Article  CAS  Google Scholar 

  10. G.Y. Zhang, R. Chu, H. Zhang, and C.M. Liu, The Oxidation Mechanism of FeCrAl Alloy Added With Rare Earth Y from First-Principle Study, Adv. Mater. Res., 2013, 853, p 192–197.

    Article  Google Scholar 

  11. C. Tang, A. Jianu, M. Steinbrueck, M. Grosse, A. Weisenburger, and H.J. Seifert, Influence of Composition and Heating Schedules on Compatibility of FeCrAl Alloys with High-Temperature Steam, J. Nucl. Mater., 2018, 511, p 496–507.

    Article  CAS  Google Scholar 

  12. S. Hayashi and T. Maeda, Effect of Zr on Initial Oxidation Behavior of FeCrAl Alloys, Oxid. Met., 2020, 93(5–6), p 573–586.

    Article  CAS  Google Scholar 

  13. J. Eklund, B. Jönsson, A. Persdotter, J. Liske, J.E. Svensson, and T. Jonsson, The Influence of Silicon on the Corrosion Properties of FeCrAl Model Alloys in Oxidizing Environments at 600 °C, Corros. Sci., 2018, 144, p 266–276.

    Article  CAS  Google Scholar 

  14. H. Yu, S. Kondo, R. Kasada, N. Oono, S. Hayashi, and S. Ukai, Development of Nano-Oxide Particles Dispersed Alumina Scale Formed on Zr-added FeCrAl ODS Ferritic Alloys, Nucl. Mater. Energy, 2020, 25, p 100798.

    Article  Google Scholar 

  15. G. Chen, H. Wang, H. Sun, Y. Zhang, P. Cao, and J. Wang, Effects of Nb-Doping on the Mechanical Properties and High-Temperature Steam Oxidation of Annealing FeCrAl Fuel Cladding Alloys, Mater. Sci. Eng. A, 2021, 803, p 140500.

    Article  CAS  Google Scholar 

  16. T. Maeda, S. Ukai, S. Hayashi, N. Oono, Y. Shizukawa, and K. Sakamoto, Effects of Zirconium and Oxygen on the Oxidation of FeCrAl-ODS Alloys Under Air and Steam Conditions up to 1500 °C, J. Nucl. Mater., 2019, 516, p 317–326.

    Article  CAS  Google Scholar 

  17. T. Huang, J. Lü, P. Song, A. Khan, R. Chen, and J. Yi, Effect of Pt Doping on Oxide Scale Formation on Yttria-Dispersion FeCrAl Alloy at 1200 °C, Corros. Sci., 2020, 168, p 108580.

    Article  CAS  Google Scholar 

  18. T. Huang, D. Naumenko, P. Song, J. Lu, and W.J. Quadakkers, Effect of Titanium Addition on Alumina Growth Mechanism on Yttria-Containing FeCrAl-Base Alloy, Oxid. Met., 2018, 90(5–6), p 671–690.

    Article  CAS  Google Scholar 

  19. P.Y. Hou, Impurity Effects on Alumina Scale Growth, J. Am. Ceram. Soc., 2003, 86(4), p 660–668.

    Article  CAS  Google Scholar 

  20. J.K. Tien and F.S. Petfit, Mechanism of Oxide Adherence on Fe-25Cr-4Al (Y or Sc) Alloys, Metall. Trans., 1972, 3(6), p 1587.

    Article  CAS  Google Scholar 

  21. D. Naumenko, B.A. Pint, and W.J. Quadakkers, Current Thoughts on Reactive Element Effects in Alumina-Forming Systems: In Memory of John Stringer, Oxid. Met., 2016, 86(1–2), p 1–43.

    Article  CAS  Google Scholar 

  22. D. Naumenko, V. Kochubey, L. Niewolak, A. Dymiati, J. Mayer, L. Singheiser, and W.J. Quadakkers, Modification of Alumina Scale Formation on FeCrAlY Alloys by Minor Additions of Group IVa Elements, J. Mater. Sci., 2008, 43(13), p 4550–4560.

    Article  CAS  Google Scholar 

  23. D.F. Falaakh, S. Kim, and C.B. Bahn, Microstructure of Aluminium Oxide Formed on Ferritic FeCrAl Alloy after High-Temperature Steam Oxidation, Mater. High Temp., 2020, 37(3), p 207–219.

    Article  CAS  Google Scholar 

  24. P.Y. Hou and J. Stringer, The Effect of Reactive Element Additions on the Selective Oxidation, Growth and Adhesion of Chromia Scales, Mat. Sci. Eng. A, 1995, 202(1–2), p 1–10.

    Article  Google Scholar 

  25. D.P. Whittle and J. Stringer, Improvements in High Temperature Oxidation Resistance by Additions of Reactive Elements or Oxide Dispersions, Philos. Trans. R. Soc. Lond. A, 1980, 295(1413), p 309–329.

    Article  CAS  Google Scholar 

  26. B.A. Pint, Experimental Observations in Support of the Dynamic-Segregation Theory to Explain the Reactive-Element Effect, Oxid. Met., 1996, 45(1–2), p 1–37.

    Article  CAS  Google Scholar 

  27. F.I. Wei and F.H. Stott, The Development of Cr2O3 Scales on Iron-Chromium Alloys Containing Reactive Elements, Corros. Sci., 1989, 29(7), p 839–861.

    Article  CAS  Google Scholar 

  28. S.M.C. Fernandes and L.V. Ramanathan, Cyclic Oxidation Behaviour of Rare Earth Oxide Coated Fe-20Cr Alloys, Surf. Eng., 2006, 22(4), p 248–252.

    Article  CAS  Google Scholar 

  29. S.M.C. Fernandes and L.V. Ramanathan, Effect of Surface Deposited Rare Earth Oxide Gel Characteristics on Cyclic Oxidation Behavior of Fe20-Cr Alloys, Mater. Res., 2006, 9(2), p 199–203.

    Article  CAS  Google Scholar 

  30. H. Nagai, F. Koshi-ishi, S. Ishikawa, and K.I. Shoji, Effect of Rare Earth Oxide Dispersion on the Oxidation of Ni-15Cr Sintered Alloy, Trans. Jpn. Inst. Met., 1983, 24(12), p 839–848.

    Article  CAS  Google Scholar 

  31. G. Hongbo, W. Di, P. Hui, G. Shengkai, and X. Huibin, Effect of Sm, Gd, Yb, Sc and Nd as Reactive Elements on Oxidation Behaviour of β-NiAl at 1200 °C, Corros. Sci., 2014, 78, p 369–377.

    Article  Google Scholar 

  32. H. Nagai, T. Murai, and H. Mitani, The Role of Rare Earths and Reactive Elements in High-Temperature Oxidation Behavior of Fe-20Cr Alloy, Trans. Jpn. Inst. Met., 1979, 20(6), p 299–310.

    Article  CAS  Google Scholar 

  33. D.W. Yun, S.M. Seo, H.W. Jeong, and Y.S. Yoo, The Effect of Gd Addition on the Cyclic Oxidation Behavior and Creep Life of Alumina-Forming Ni-Based Superalloy, Corros. Sci., 2020, 170, p 108694.

    Article  CAS  Google Scholar 

  34. R. Ding, H. Wang, Y. Jiang, R. Liu, K. Jing, M. Sun, R. Zhang, S. Qiu, Z. Xie, H. Deng, X. Wang, M. Kong, W. Jiang, Q. Fang, and C. Liu, Effects of ZrC Addition on the Microstructure and Mechanical Properties of Fe-Cr-Al Alloys Fabricated by Spark Plasma Sintering, J. Alloys Compd., 2019, 805, p 1025–1033.

    Article  CAS  Google Scholar 

  35. J.M. Oh, C.I. Hong, and J.W. Lim, Comparison of Deoxidation Capability on the Specific Surface Area of Irregular Titanium Powder Using Calcium Reductant, Adv. Powder Technol., 2019, 30(1), p 1–5.

    Article  CAS  Google Scholar 

  36. Y. Cheng, Z. Cui, L. Cheng, D. Gong, and W. Wang, Effect of Particle Size on Densification of Pure Magnesium During Spark Plasma Sintering, Adv. Powder Technol., 2017, 28(4), p 1129–1135.

    Article  CAS  Google Scholar 

  37. G.Q. Xie, O. Ohashi, T. Yoshioka, M.H. Song, K. Mitsuishi, H. Yasuda, K. Furuya, and T. Noda, Effect of Interface Behavior Between Particles on Properties of Pure Al Powder Compacts by Spark Plasma Sintering, Mater. Trans., 2001, 42(9), p 1846–1849.

    Article  CAS  Google Scholar 

  38. H. Wan, X. An, Q. Kong, X. Wu, W. Feng, H. Wang, J. Wu, C. Lu, W. Zha, H. Sun, and L. Huang, Fabrication of Ultrafine Grained FeCrAl-0.6 wt.% ZrC Alloys with Enhanced Mechanical Properties by Spark Plasma Sintering, Adv. Powder Technol., 2021, 32(5), p 1380–1389.

    Article  CAS  Google Scholar 

  39. H. Wang, W. Li, T. Hao, W. Jiang, Q. Fang, X. Wang, T. Zhang, J. Zhang, K. Wang, and L. Wang, Mechanical Property and Damping Capacity of Ultrafine-Grained Fe-13Cr-2Al-1Si Alloy Produced by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2017, 695, p 193–198.

    Article  CAS  Google Scholar 

  40. K. Lipkina, D. Hallatt, E. Geiger, B.W.N. Fitzpatrick, K. Sakamoto, H. Shibata, and M.H.A. Piro, A Study of the Oxidation Behaviour of FeCrAl-ODS in Air and Steam Environments up to 1400 °C, J. Nucl. Mater., 2020, 541, p 152305.

    Article  CAS  Google Scholar 

  41. G. Xu, K. Wang, H. Li, J. Ju, H. Jiang, and Q. Wang, In Situ Nanoparticle-Induced Anti-Oxidation of FeCr Alloys, Mater. Charact., 2021, 179, p 111372.

    Article  CAS  Google Scholar 

  42. G. Xu, K. Wang, H. Li, J. Ju, X. Dong, H. Jiang, Q. Wang, and W. Ding, In Situ Nanoparticle-Induced Anti-Oxidation Mechanisms: Application to FeCrB Alloys, Corros. Sci., 2021, 190, p 109656.

    Article  CAS  Google Scholar 

  43. B. Pieraggi, Calculations of Parabolic Reaction Rate Constants, Oxid. Met., 1987, 27(3–4), p 177–185.

    Article  CAS  Google Scholar 

  44. Y. Garip, Investigation of Isothermal Oxidation Performance of TiAl Alloys Sintered by Different Processing Methods, Intermetallics, 2020, 127, p 106985.

    Article  CAS  Google Scholar 

  45. Q. Li, P. Song, Z. Li, D. Long, Y. Sun, T. Huang, C. Li, and J. Lu, Effect of Water Vapor on the Oxide Growth in FeCrAl-Based Oxide Dispersion-Strengthened Fuel Cladding Material at 1100 °C and 1200 °C, Corros. Sci., 2021, 191, p 109775.

    Article  CAS  Google Scholar 

  46. A. Khan, Y. Huang, Z. Dong, and X. Peng, Effect of Cr2O3 Nanoparticle Dispersions on Oxidation Kinetics and Phase Transformation of Thermally Grown Alumina on a Nickel Aluminide Coating, Corros. Sci., 2019, 150, p 91–99.

    Article  CAS  Google Scholar 

  47. X.Y. Zhao, H.B. Guo, Y.Z. Gao, S.X. Wang, and S.K. Gong, Effects of Dy on Transient Oxidation Behavior of Eb-Pvd B-NiAl Coatings at Elevated Temperatures, Chin. J. Aeronaut., 2011, 24, p 363–368.

    Article  CAS  Google Scholar 

  48. H.J. Choi, J. Jedlinski, B. Yao, and Y.H. Sohn, Transmission Electron Microscopy Observations on the Phase Composition and Microstructure of the Oxidation Scale Grown on as-Polished and Yttrium-Implanted β-NiAl, Surf. Coat. Technol., 2010, 205, p 1206–1210.

    Article  CAS  Google Scholar 

  49. H. Guo, W. Di, P. Hui, S. Gong, and H. Xu, Effect of Sm, Gd, Yb, Sc and Nd as Reactive Elements on Oxidation Behaviour of β-NiAl at 1200 °C, Corros. Sci., 2014, 78, p 369–377.

    Article  CAS  Google Scholar 

  50. Y.I. Seo, B.H. Lee, Y.D. Kim, and K.H. Lee, Grain Size Effects on Magnetomechanical Damping Properties of Ferromagnetic Fe-5 wt.% Al Alloy, Mater. Sci. Eng. A, 2006, 431(1–2), p 80–85.

    Article  Google Scholar 

  51. C. Capdevila, M.K. Miller, G. Pimentel, and J. Chao, Influence of Recrystallization on Phase Separation Kinetics of Oxide Dispersion Strengthened Fe-Cr-Al Alloy, Scr. Mater., 2012, 66, p 254–257.

    Article  CAS  Google Scholar 

  52. C. Li, T. Huang, P. Song, X. Yuan, J. Feng, K. Lü, Q. Li, W. Duan, and J. Lu, Effect of Water Vapour on Morphology of the Si/Ti-rich Phase at the Interface Between Oxide Layer and Aluminide Coating, Corros. Sci., 2020, 163, p 108240.

    Article  CAS  Google Scholar 

  53. B.A. Pint, K.A. Terrani, Y. Yamamoto, and L.L. Snead, Material Selection for Accident Tolerant Fuel Cladding, Metall. Mater. Trans. E, 2015, 2(3), p 190–196.

    CAS  Google Scholar 

  54. B.A. Pint, K.L. More, P.F. Tortorelli, W.D. Porter, and I.G. Wright, Optimizing the Imperfect Oxidation Performance of Iron Aluminides, Mater. Sci. Forum, 2001, 369–372, p 411–418.

    Article  CAS  Google Scholar 

  55. D. Naumenko, B. Gleeson, E. Wessel, L. Singheiser, and W.J. Quadakkers, Correlation Between the Microstructure, Growth Mechanism, and Growth Kinetics of Alumina Scales on a FeCrAlY Alloy, Metall. Mater. Trans. A, 2007, 38(12), p 2974–2983.

    Article  Google Scholar 

  56. B.A. Pint, A.J. Garratt-Reed, and L.W. Hobbs, The Reactive Element Effect in Commercial ODS FeCrAI Alloys, Mater. High Temp., 2016, 13(1), p 3–16.

    Article  Google Scholar 

  57. H. Hindam and D.P. Whittle, Microstructure, Adhesion and Growth Kinetics of Protec-tive Scales on Metals and Alloys, Oxid. Met., 1982, 18(5–6), p 245–284.

    Article  CAS  Google Scholar 

  58. J. Stringer, B.A. Wilcox, and R.I. Jaffee, The High-Temperature Oxidation of Nickel-20 wt.% Chromium Alloys Containing Dispersed Oxide Phases, Oxid. Met., 1972, 5(1), p 11–47.

    Article  CAS  Google Scholar 

  59. D.G. Lees, On the Reasons for the Effects of Dispersions of Stable Oxides and Additions of Reactive Elements on the Adhesion and Growth-Mechanisms of Chromia and Alumina Scales-the “Sulfur Effect,” Oxid. Met., 1987, 27(1), p 75–81.

    Article  CAS  Google Scholar 

  60. V. Kochubey, H. Al Badairy, J. Le Coze, D. Naumenko, G.J. Tatlock, E. Wessel, and W.J. Quadakkers, Effect of Carbon Content on the Oxidation Behaviour of FeCrAlY Alloys in the Temperature Range 1200-1300 °C, Mater. High Temp., 2014, 22(3–4), p 461–466.

    Article  Google Scholar 

  61. G. Merceron, R. Molins, and J.L. Strudel, Oxidation Behaviour and Microstructural Evolution of FeCrAl ODS Alloys at High Temperature, Mater. High Temp., 2014, 17(1), p 149–157.

    Article  Google Scholar 

  62. G.C. Bye and G.T. Simpkin, Influence of Cr and Fe on formation of α-Al2O3 from γ-Al2O3, J. Am. Ceram. Soc., 1974, 57(8), p 367–371.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Cultivation project for original scientific research instruments and equipments of Southwest Jiaotong University (NO. XJ2021KJZK041) and the National Key R&D Program of China (No. 2016YFB1200505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Sun, H., Guo, Q. et al. A Study of the Oxidation of Gd-Doped FeCrAl in 1000 °C Steam Environments. J. of Materi Eng and Perform 32, 978–992 (2023). https://doi.org/10.1007/s11665-022-07161-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07161-0

Keywords

Navigation