Skip to main content

Advertisement

Log in

Lifetime of Plasma-Sprayed Thermal Barrier Coatings: Comparison of Numerical and Experimental Results

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Atmospherically sprayed thermal barrier coatings (TBCs) are nowadays an essential part in modern gas turbines. However, a design integrated use of these coatings is only possible with reliable lifetime models. In this paper, a model is outlined which describes the major failure in TBCs associated with the growth of a thermally grown oxide (TGO) on the bond coat (BC). An essential part of the model is a simplified description of the crack growth as a result of thermal cycling and TGO growth. In addition, the energy release rate for the system is calculated and compared to an estimated critical energy release rate reduced by the crack growth. If both are equal, failure is assumed. The results of the modeling are compared to thermal cycling experiments partly applying a thermal gradient. BC temperatures and also microstructures of the ceramic topcoat have been varied and the influence on the cyclic life studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.C. Zhou and T. Hashida, Thermal Fatigue Failure Induced by Delamination in Thermal Barrier Coating, Int. J. Fatigue, 2002, 24(2-4), p 407

    Article  CAS  Google Scholar 

  2. A.M. Freborg, B.L. Ferguson, W.J. Brindley, and G.J. Petrus, Modelling Oxidation Induced Stresses in Thermal Barrier Coatings, Mater. Sci. Eng. A, 1998, 245, p 182

    Article  Google Scholar 

  3. M.Y. He, A.G. Evans, and J.W. Hutchinson, The Ratcheting of Compressed Thermally Grown Thin Films on Ductile Substrates, Acta Mater., 2000, 48, p 2593

    Article  CAS  Google Scholar 

  4. A.M. Karlsson and A.G. Evans, A Numerical Model For the Cyclic Instabilities of Thermally Grown Oxides in Thermal Barrier Coating Systems, Acta Mater., 2001, 49, p 1793

    Article  CAS  Google Scholar 

  5. R. Vaßen, G. Kerkhoff, M. Ahrens, and D. Stöver, Life Time Prediction Model for Plasma-Sprayed Thermal Barrier Coatings Based on a Micromechanical Approach, Ceramic Materials and Components for Engines, J.G. Heinrich and F. Aldinger, Ed., Wiley, VCH, Weinheim, 2001, p 182.

  6. R. Vaßen, G. Kerkhoff, and D. Stöver, Development of a Micromechanical Life Prediction Model for Plasma Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2001, 303(1-2), p 100-109

    Article  Google Scholar 

  7. G.C. Chang, W. Pucharoen, and R.A. Miller, Finite Element Thermal Stress Solutions for Thermal Barrier Coatings, Surf. Coat. Technol., 1987, 30, p 13

    Article  CAS  Google Scholar 

  8. R.A. Miller, Oxidation-Based Model for Thermal Barrier Coating Life, J. Am. Ceram. Soc., 1984, 67, p 517

    Article  CAS  Google Scholar 

  9. J.T. DeMasi, K.D. Sheffler, and M. Ortitz, “Thermal Barrier Coating Life Time Prediction Model Development, Phase 1 Final Report,” NASA Report, vol. CR182230, 1989.

  10. M. Oechsner,“Ein Beitrag zur Lebensdauervorhersage von keramischen Wärmedämm-schichten,” VDI Fortschrittsberichte, 263, 2001.

  11. D. Renusch, H. Echsler, and M. Schütze, Progress in life time modelling of APS-TBC Part I: critical strains, macro-cracking, and thermal fatigue, Mater. High Temp., 2004, 21, p 65-76

    Article  CAS  Google Scholar 

  12. D. Renusch, H. Echsler, and M. Schütze, Progress in Life Time Modelling of APS-TBC, Part II: Critical Strains, Macro-Cracking, and Thermal Fatigue, Mater. High Temp., 2004, 21(2), p 77-86

    Article  CAS  Google Scholar 

  13. O. Trunova, T. Beck, R. Herzog, R.W. Steinbrech, and L. Singheiser, Damage Mechanisms and Lifetime Behavior of Plasma Sprayed Thermal Barrier Coating Systems for Gas Turbines—Part I: Experiments, Surf. Coat. Technol., 2008, 202, p 5027-5032

    Article  CAS  Google Scholar 

  14. T. Beck, R. Herzog, O. Trunova, M. Offermann, R.W. Steinbrech, and L. Singheiser, Damage Mechanisms and Lifetime Behaviour of Plasma-Sprayed Thermal Barrier Coating Systems for Gas Turbines—Part II: Modelling, Surf. Coat. Technol., 2008, 202, p 5901-5908

    Article  CAS  Google Scholar 

  15. E.P. Busso, H.E. Evans, L. Wright, L.N. McCartney, J. Numm, and S. Osgerby, A Software Tool for Lifetime Prediction of Thermal Barrier Coating Systems, Mater. Corros., 2008, 59(7), p 556-565

    Article  CAS  Google Scholar 

  16. M. Ahrens, R. Vaßen, and D. Stöver, Stress Distributions in Plasma-Sprayed Thermal Barrier Coatings as a Function of Interface Roughness and Oxide Scale Thickness, Surf. Coat. Technol., 2002, 161, p 26-35

    Article  CAS  Google Scholar 

  17. F. Traeger, M. Ahrens, R. Vaßen, and D. Stöver, A Life Time Model for Ceramic Thermal Barrier Coatings, Mater. Sci. Eng., 2003, A358, p 255-265

    CAS  Google Scholar 

  18. M. Ahrens, S. Lampenscherf, R. Vaßen, and D. Stöver, Sintering and Creep Processes in Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(3), p 432-442

    Article  CAS  ADS  Google Scholar 

  19. D. Munz and T. Fett, Ceramics Springer Series in Materials Science, Springer-Verlag, Berlin, 1999

    Google Scholar 

  20. T. Patterson, A. Leon, B. Jayaraj, J. Liu, and Y.H. Sohn, Thermal Cyclic Lifetime and Oxidation Behavior of Air Plasma Sprayed CoNiCrAlY Bond Coats for Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 203, p 437-441

    Article  CAS  Google Scholar 

  21. G.P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill, New York, 1979, p 640

    MATH  Google Scholar 

  22. U. Bast and E. Schumann, Development of Novel Oxide Materials for TBCs, Ceram. Eng. Sci. Proc., 2002, 23(4), p 525-532

    Article  CAS  Google Scholar 

  23. R. Vaßen, F. Traeger, and D. Stöver, New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 351-361

    Google Scholar 

  24. R. Vaßen and D. Stöver, Influence of Microstructure on the Thermal Cycling Performance of Thermal Barrier Coatings, Thermal Spray 2007: Global Coating Solutions, Beijing, PR China, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., 14-16 May 2007, ASM International, Materials Park, OH, USA, 2007.

  25. R. Vaßen, H. Guo, and D. Stöver, Manufacture and Properties of Segmented Thermal Barrier Coatings, Proceedings of the 29th Int. Cocoa Beach Conf. & Exposition, Cocoa Beach, Fl., D. Zhu and W.M. Kriven, Ed., 23-28 Jan, Ceram. Eng. Sci. Proc., 26(38), 2005, p 37-45.

  26. J. Malzbender and R.W. Steinbrech, Determination of Stress-Dependent Stiffness of Plasma-Sprayed Thermal Barrier Coatings Using Depth-Sensitive Indentation, J. Mater. Res., 2003, 18(8), p 1975-1984

    Article  CAS  ADS  Google Scholar 

  27. T. Wakui, J. Malzbender, and R.W. Steinbrech, Stress Analysis of Plasma Sprayed Thermal Barrier Coatings and Mechanical Stress, J. Therm. Spray Technol., 2004, 13(3), p 390-395

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

The support of Dr. Franziska Träger and especially of Dr. Jose Marques for performing Ansys calculations of the stress state and developing an analytical formula to describe the results are gratefully acknowledged. Special thanks to Dr. Jürgen Malzbender, IEF-2, Forschungszentrum Jülich GmbH, for performing the indentation tests for the determination of Young’s moduli. The authors also gratefully acknowledge the work of Mrs. Sigrid Schwartz-Lückge for carrying out scanning electron microscopy, of Mr. Karl-Heinz Rauwald, Mr. Frank Vondahlen, and Mr. Ralf Laufs for the manufacturing of the TBC systems, and of Mrs. Dr. Doris Sebold for SEM work and fruitful discussion on the oxidation test results. Also many thanks to Mrs. Nicole Hilgers for the thermal cycling work. The presented results have partly been made within a German research project MARCKO—thermal barrier coating systems, financed by the German Federal Ministry of Economics and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Vaßen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaßen, R., Giesen, S. & Stöver, D. Lifetime of Plasma-Sprayed Thermal Barrier Coatings: Comparison of Numerical and Experimental Results. J Therm Spray Tech 18, 835–845 (2009). https://doi.org/10.1007/s11666-009-9389-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9389-z

Keywords

Navigation