Skip to main content
Log in

The oxidation behavior of CoCrAI systems containing active element additions

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effect of small amounts of yttrium (up to 1 wt. %) and hafnium (up to 1.5 wt.%) on the oxidation behavior of Co-Cr-Al alloys in the temperature range 1000–1200°C for times up to 1000 hr in air has been studied. The major portion of the study has been concerned with Co-10Cr-11Al base alloys. Both isothermal and cyclic tests have been carried out; the cycle used consisted of 20 hr at temperature, followed by cooling to room temperature. Both additions reduce the overall oxidation, Hf somewhat more so than Y. In part, this is due to the improved adhesion between scale and alloy reducing scale spallation at temperature, and in part due to possible modification of the Al2O3 grain size. The former factor is far more critical under thermal cycling conditions. Under isothermal conditions the oxidation rate increases with increasing Hf content with all but the 1.5 wt.% alloy oxidizing more slowly than the Hf-free alloy; increase in Y content has the reverse effect. Under thermal cycling conditions the 0.3 and 1.0 wt.% Hf alloys show the lowest overall weight gain. Metallographic evidence suggests that the improved scale adhesion is due principally to a pegging mechanism; the active elements promote the growth of intrusions of Al2O3 into the alloy. However, if the intrusions are too large, they can act as initiators of scale failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Wallwork and A. Z. Hed,Oxid. Met. 3, 229 (1971).

    Google Scholar 

  2. C. S. Giggins and F. S. Pettit,Metall. Trans. 3, 1071 (1971).

    Google Scholar 

  3. H. H. Davis, H. C. Graham, and I. V. Kvernes,Oxid. Met. 3, 431 (1971).

    Google Scholar 

  4. M. S. Seltzer, B. A. Wilcox, and J. Stringer,Metall. Trans. 3, 2391 (1972).

    Google Scholar 

  5. J. Stringer, B. A. Wilcox, and R. I. Jaffee,Oxid. Met. 5, 11 (1972).

    Google Scholar 

  6. J. Stringer and I. G. Wright,Oxid. Met. 5, 59 (1972).

    Google Scholar 

  7. I. G. Wright and B. A. Wilcox,Metall. Trans. 5, 953 (1974).

    Google Scholar 

  8. J. Stringer, A. Z. Hed, G. R. Wallwork, and B. A. Wilcox,Corros. Sci. 12, 625 (1972).

    Google Scholar 

  9. I. G. Wright and J. Stringer,Metallography 6, 65 (1973).

    Google Scholar 

  10. C. S. Wukusick and J. F. Collins,Mater. Res. Stand. 4, 637 (1964).

    Google Scholar 

  11. E. J. Feiten,J. Electrochem. Soc. 108, 490 (1961).

    Google Scholar 

  12. B. Lustman,Trans. Am. Inst. Min. (Metall.) Eng. 188, 995 (1950).

    Google Scholar 

  13. J. K. Tien and F. S. Pettit,Metall. Trans. 3, 1587 (1972).

    Google Scholar 

  14. J. Stringer,Metall. Rev. 11, 113 (1966).

    Google Scholar 

  15. J. D. Kuenzly and D. L. Douglass,Oxid. Met. 8, 139 (1974).

    Google Scholar 

  16. H. Pfeiffer,Werkst. Korros. 8, 574 (1957).

    Google Scholar 

  17. J. M. Francis and J. A. Jutson,Corros. Sci. 8, 574 (1968).

    Google Scholar 

  18. F. A. Golightly, F. H. Stott, and G. C. Wood,Oxid. Met. 10, 163 (1976).

    Google Scholar 

  19. C. S. Giggins and F. S. Pettit, Final Rept. to Aerospace Res. Labs., Wright Patterson AFB, Contract N. F33615-72-C-1702 (1976).

  20. G. R. Wallwork and A. Z. Hed,Oxid. Met. 3, 213 (1971); G. N. Irving, D. P. Whittle, and J. Stringer,Corrosion 33, 56 (1977).

    Google Scholar 

  21. J. G. Fountain, F. A. Golightly, F. H. Stott, and G. C. Wood,Oxid. Met. 10, 341 (1976).

    Google Scholar 

  22. C. W. Price, I. G. Wright, and G. R. Wallwork,Metall Trans. 4, 2423 (1973).

    Google Scholar 

  23. H. Fischmeister,Mem. Sci. Rev. Metall. 62, 211 (1965).

    Google Scholar 

  24. J. Stringer,Corros. Sci. 10, 513 (1970).

    Google Scholar 

  25. J. K. Tien and F. S. Pettit,Metall. Trans. 3, 1587 (1972).

    Google Scholar 

  26. A. E. Paladino and W. D. Kingery,J. Chem. Phys. 37, 957 (1962).

    Google Scholar 

  27. R. E. Mistler and R. L. Coble,J. Am. Ceram. Soc. 54, 60 (1971).

    Google Scholar 

  28. R. E. Mistler and R. L. Coble,J. Appl. Phys. 45, 1507 (1974).

    Google Scholar 

  29. Y. Oishi and W. D. Kingery,J. Chem. Phys. 37, 480 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allam, I.M., Whittle, D.P. & Stringer, J. The oxidation behavior of CoCrAI systems containing active element additions. Oxid Met 12, 35–66 (1978). https://doi.org/10.1007/BF00609974

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00609974

Key words

Navigation