Skip to main content

Advertisement

Log in

Additive Manufacturing of Polyamide 66: Effect of Process Parameters on Crystallinity and Mechanical Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, polyamide 66 (PA 66) filaments were prepared for fused filament fabrication (FFF). The effects of the process parameters on the mechanical properties, initial microstructures, dynamic mechanical behavior, and crystallinity of the samples were investigated. The samples obtained at high processing temperatures exhibited high crystallinity, high tensile strength, and low porosity. Almost fully dense samples with excellent mechanical properties were obtained under optimal conditions. The tensile strength of the samples improved by 29.5% (from 68.07 to 88.17 MPa) with an increase in the nozzle temperature from 270 to 290 °C. The elongation at break abruptly increased (from 2.38 to 13.17%), because of the plastic behavior of the material and strain hardening. X-ray diffraction results demonstrated that the crystallinity of PA 66, significantly improved (from 47.3 to 65.6%). In addition, the dynamic mechanical performance of the samples was significantly related to the raster angle. The samples fabricated at a raster angle of 0° exhibited the best dynamic mechanical properties, followed by the 45° and 90° samples. The successful fabrication of PA 66 samples demonstrates the potential use of PA 66 for producing parts using FFF, and provides options for utilizing materials with improved performance for additive manufacturing applications in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. G. Bruno and G. Marchetto, Process-Translatable Petri Nets for the Rapid Prototyping of Process Control Systems, IEEE T. Softw. Eng., 1986, 2, p 346–357.

    Article  Google Scholar 

  2. G. Liao, Z. Li, Y. Cheng, D. Xu, D. Zhu, S. Jiang, J. Guo, X. Chen, G. Xu and Y. Zhu, Properties of Oriented Carbon Fiber/Polyamide 12 Composite Parts Fabricated by Fused Deposition Modeling, Mater. Des., 2018, 139, p 283–292.

    Article  CAS  Google Scholar 

  3. L. Yang, S. Li, Y. Li, M. Yang and Q. Yuan, Experimental Investigations for Optimizing the Extrusion Parameters on FDM PLA Printed Parts, J. Mater. Eng. Perform., 2018, 28(1), p 169–182.

    Article  Google Scholar 

  4. O.S. Carneiro, A.F. Silva and R. Gomes, Fused Deposition Modeling with Polypropylene, Mater. Des., 2015, 83, p 768–776.

    Article  CAS  Google Scholar 

  5. S. Wang, Y. Ma, Z. Deng, S. Zhang and J. Cai, Effects of Fused Deposition Modeling Process Parameters on Tensile, Dynamic Mechanical Properties Of 3D Printed Polylactic Acid Materials, Polym. Test., 2020, 86, p 106483.

    Article  CAS  Google Scholar 

  6. C.-C. Shih, M. Burnette, D. Staack, J. Wang and B.L. Tai, Effects of Cold Plasma Treatment on Interlayer Bonding Strength in FFF Process, Addit. Manuf., 2019, 25, p 104–111.

    CAS  Google Scholar 

  7. S. Pal, G. Lojen, R. Hudak, V. Rajtukova, T. Brajlih, V. Kokol and I. Drstvenšek, As-Fabricated Surface Morphologies of Ti-6Al-4V Samples Fabricated by Different Laser Processing Parameters in Selective Laser Melting, Addit. Manuf., 2020, 33, p 101147.

    CAS  Google Scholar 

  8. Y. Lu, S. Wu, Y. Gan, T. Huang, C. Yang, L. Junjie and J. Lin, Study on the Microstructure, Mechanical Property and Residual Stress of SLM Inconel-718 Alloy Manufactured by Differing Island Scanning Strategy, Optics Laser Technol., 2015, 2015(75), p 197–206.

    Article  Google Scholar 

  9. D. Olivier, J.A. Travieso-Rodriguez, S. Borros, G. Reyes and R. Jerez-Mesa, Influence of Building Orientation on the Flexural Strength of Laminated Object Manufacturing Specimens, J. Mech. Sci. Technol., 2017, 31(1), p 133–139.

    Article  Google Scholar 

  10. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928.

    Article  CAS  Google Scholar 

  11. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen and D. Hui, Additive Manufacturing (3D printing): A Review of Materials, Methods, Applications and Challenges, Compos. Part B Eng., 2018, 143, p 172–196.

    Article  CAS  Google Scholar 

  12. Y. Yang, L. Li and J. Zhao, Mechanical Property Modeling of Photosensitive Liquid Resin in Stereolithography Additive Manufacturing: Bridging Degree of Cure with Tensile Strength and Hardness, Mater. Des., 2019, 162, p 418–428.

    Article  CAS  Google Scholar 

  13. J. Borrello, P. Nasser, J. Iatridis and K.D. Costa, 3D Printing a Mechanically-Tunable Acrylate Resin on a Commercial DLP-SLA Printer, Addit. Manuf, 2018, 23, p 374–380.

    CAS  Google Scholar 

  14. K. Wudy and D. Drummer, Aging Effects of Polyamide 12 in Selective Laser Sintering: Molecular Weight Distribution and Thermal Properties, Addit. Manuf., 2019, 25, p 1–9.

    CAS  Google Scholar 

  15. Y. Zhou, S. Xi, Y. Huang, M. Kong, Q. Yang and G. Li, Preparation of Near-Spherical PA12 Particles for Selective Laser Sintering via Plateau-Rayleigh Instability of Molten Fibers, Mater. Des, 2020, 190, p 108578.

    Article  CAS  Google Scholar 

  16. D. Zhu, Y. Ren, G. Liao, S. Jiang, F. Liu, J. Guo and G. Xu, Thermal and Mechanical Properties of Polyamide 12/Graphene Nanoplatelets Nanocomposites and Parts Fabricated by Fused Deposition Modeling, J. Appl. Polym. Sci., 2017, 134, p 45332.

    Article  Google Scholar 

  17. Y. Li, S. Gao, R.X. Dong and X. Duan, Additive Manufacturing of PLA and CF/PLA Binding Layer Specimens via Fused Deposition Modeling, J. Mater. Eng. Perform., 2018, 27, p 492–500.

    Article  CAS  Google Scholar 

  18. R. Hashemi Sanatgar, C. Campagne and V. Nierstrasz, Investigation of the Adhesion Properties of Direct 3D Printing of Polymers and Nanocomposites on Textiles: Effect of FDM Printing Process Parameters, Appl. Surf. Sci., 2017, 403, p 551–563.

    Article  CAS  Google Scholar 

  19. D. Drummer, S. Cifuentes-Cuéllar and D. Rietzel, Suitability of PLA/TCP for Fused Deposition Modeling, Rapid Prototyp. J., 2012, 18, p 500–507.

    Article  Google Scholar 

  20. H. Ramezani Dana, F. Barbe, L. Delbreilh, M.B. Azzouna, A. Guillet and T. Breteau, Polymer Additive Manufacturing of ABS Structure: Influence of Printing Direction on Mechanical Properties, J. Manuf. Proc., 2019, 44, p 288–298.

    Article  Google Scholar 

  21. A. Kantaros and D. Karalekas, Fiber Bragg Grating Based Investigation of Residual Strains in ABS Parts Fabricated by Fused Deposition Modeling Process, Mater. Des., 2013, 50, p 44–50.

    Article  CAS  Google Scholar 

  22. K.S. Boparai, R. Singh, F. Fabbrocino and F. Fraternali, Thermal Characterization of Recycled Polymer for Additive Manufacturing Applications, Compos. Part B Eng., 2016, 106, p 42–47.

    Article  CAS  Google Scholar 

  23. K.S. Boparai, R. Singh and H. Singh, Process Optimization of Single Screw Extruder for Development of Nylon 6-Al-Al2O3 Alternative FDM Filament, Rapid Prototyp. J., 2016, 22, p 766–776.

    Article  Google Scholar 

  24. R. Singh, S. Singh and F. Fraternali, Development of In-House Composite Wire Based Feed Stock Filaments of Fused Deposition Modelling for Wear-Resistant Materials and Structures, Compos. Part B Eng., 2016, 98, p 244–249.

    Article  CAS  Google Scholar 

  25. X. Zhang, W. Fan and T. Lin, Fused Deposition Modeling 3D Printing of Polyamide-Based Composites and its Applications, Compos. Comm., 2020, 21, p 100413.

    Article  Google Scholar 

  26. X. Gao and D. Zhang, Fused Deposition Modeling with Polyamide 1012, Rapid Prototyp. J., 2019, 25, p 1145–1154.

    Article  Google Scholar 

  27. R. Garcı’a-Leo, M. Rodrı’guez-Castilla and W. Quintero-Quintero, Experimental Analysis of Impact Resistance of 3D Polycarbonate and Nylon + Carbon Fiber Specimens, J. Mater. Eng. Perform., 2020, 30, p 4837–4847.

    Article  Google Scholar 

  28. O. Carneiro, A. Silva and R. Gomesa, Fused Deposition Modeling with Polypropylene, Mater. Des., 2015, 83, p 768–776.

    Article  CAS  Google Scholar 

  29. R. Sharma, R. Singh, R. Penna and F. Fraternali, Investigations for Mechanical Properties of Hap, PVC and PP Based 3D Porous Structures Obtained Through Biocompatible FDM Filaments, Compos. Part B Eng., 2018, 132, p 237–243.

    Article  CAS  Google Scholar 

  30. G. Sodeifiana, S. Ghaseminejada and A. Yousefid, Preparation of Polypropylene/Short Glass Fiber Composite as Fused Deposition Modeling (FDM) Filament, Results Phys., 2019, 12, p 205–222.

    Article  Google Scholar 

  31. A. de León, A. Domínguez-Calvo and S. Molina, Materials with Enhanced Adhesive Properties Based on Acrylonitrile-Butadiene-Styrene (ABS)/Thermoplastic Polyurethane (TPU) Blends for Fused Filament Fabrication (FFF), Mater. Des., 2019, 182, p 108044.

    Article  Google Scholar 

  32. G. Kima, E. Barociob, R. Pipesb and R. Sterkenburga, 3D Printed Thermoplastic Polyurethane Bladder for Manufacturing of Fiber Reinforced Composites, Addit. Manuf., 2019, 29, p 100809.

    Google Scholar 

  33. H. Li, S. Zhang, Z. Yi, J. Li, A. Sun, J. Guo and G. Xu, Bonding Quality and Fracture Analysis of Polyamide 12 Parts Fabricated by Fused Deposition Modeling, Rapid Prototyp. J., 2017, 23, p 973–982.

    Article  Google Scholar 

  34. K. Tamura, S. Ohyama, K. Umeyama, T. Kitazawa and A. Yamagishi, Preparation and Properties of Halogen-Free Flame-Retardant Layered Silicate-Polyamide 66 Nanocomposites, Appl. Clay Sci., 2016, 126, p 107–112.

    Article  CAS  Google Scholar 

  35. S. Lei, H. Yuan, H. Qingliang and Y. Fei, Study on Crystallization, Thermal and Flame Retardant Properties of Nylon 66/Organoclay Nanocomposites by in situ Polymerization, J. Fire Sci., 2008, 26, p 475–492.

    Article  Google Scholar 

  36. Z. Chen, X. Liu, R. Lu and T. Li, Friction and Wear Mechanisms of PA66/PPS Blend Reinforced with Carbon Fiber, J. Appl. Polym. Sci., 2007, 105, p 602–608.

    Article  CAS  Google Scholar 

  37. K. Shibata, T. Yamaguchi and K. Hokkirigawa, Tribological Behavior of Polyamide 66/Rice Bran Ceramics and Polyamide 66/Glass Bead Composites, Wear, 2014, 317, p 1–7.

    Article  CAS  Google Scholar 

  38. F. Chavarria and D.R. Paul, Comparison of Nanocomposites Based on Nylon 6 and Nylon 66, Polymer, 2004, 45(25), p 8501–8515.

    Article  CAS  Google Scholar 

  39. C. Fernandez-Barranco, A. Yebra-Rodriguez, M.D. La Rubia-Garcia, F.J. Navas-Martos and P. Alvarez-Lloret, Mechanical and Crystallographic Properties of Injection-Molded Polyamide 66/Sepiolite Nanocomposites with Different Clay Loading, Polym. Compos., 2015, 36(12), p 2326–2333.

    Article  CAS  Google Scholar 

  40. R. Sengupta, A. Bandyopadhyay, S. Sabharwal, T.K. Chaki and A.K. Bhowmick, Polyamide-6,6/in Situ Silica Hybrid Nanocomposites by Sol–Gel Technique: Synthesis, Characterization And Properties, Polymer, 2005, 46(10), p 3343–3354.

    Article  CAS  Google Scholar 

  41. H.-L. Wang, T.-J. Shi, S.-Z. Yang, L.-F. Zhai and G.-P. Hang, Crystallization Behavior of PA66/SiO2 Organic-Inorganic Hybrid Material, J. Appl. Polym. Sci., 2006, 101, p 810–817.

    Article  CAS  Google Scholar 

  42. X. Li, Y. Liu, C. Guo, H. Liu, G. Wang, Q. Cai and Y. Yao, Influence of Layered Aluminoborophosphate on Flame Retardance, Crystallization Behaviors and Mechanical Properties of Polyamide 66 Systems, Chem. Res. Chine. U, 2016, 32, p 127–133.

    Article  Google Scholar 

  43. R. Li, Z. Chen and J. Pei, High Dielectric Performance of Polyamide 66/Poly(Vinylidene Fluoride) Flexible Blends Induced by Interfacial Copolymer for Capacitors, Polymers, 2015, 8(1), p 2.

    Article  Google Scholar 

  44. G. Li, J. Zhao, W. Wu, J. Jiang, B. Wang, H. Jiang and J.Y.H. Fuh, Effect of Ultrasonic Vibration on Mechanical Properties of 3D Printing Non-Crystalline and Semi-Crystalline Polymers, Materials, 2018, 11(5), p 826.

    Article  Google Scholar 

  45. Y. Lu, Y. Zhang, G. Zhang, M. Yang, S. Yan and D. Shen, Influence of Thermal Processing on the Perfection of Crystals in Polyamide 66 and Polyamide 66/Clay Nanocomposites, Polymer, 2004, 45(26), p 8999–9009.

    Article  CAS  Google Scholar 

  46. N. Cheval, F. Xu, N. Gindy, R. Brooks, Y. Zhu and A. Fahmi, Morphology, Crystallinity and Thermal Properties of Polyamide 66/Polyoxometalate Nanocomposites Synthesised Via an in situ Sol/Gel Process, Macromol. Chem. Phys., 2011, 212, p 180–190.

    Article  CAS  Google Scholar 

  47. J. Chen, W. Wu, Y. You, W. Fan and Y. Chen, Morphology and Properties of the PA66/PC/Silicone Rubber Composites, J. Appl. Polym. Sci., 2010, 117, p 2964–2971.

    CAS  Google Scholar 

  48. A. Costanzo, U. Croce, R. Spotorno, S. Fenni and D. Cavallo, Fused Deposition Modeling of Polyamides: Crystallization and Weld Formation, Polymers, 2020, 12, p 2980.

    Article  CAS  Google Scholar 

  49. C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao and C. Shi, Influence of Thermal Processing Conditions in 3D Printing on the Crystallinity and Mechanical Properties of PEEK Material, J. Mater. Process. Tech., 2017, 248, p 1–7.

    Article  Google Scholar 

  50. S. Zhou, L. Zhang, Y.-Y. Wang, Y. Zuo, S.-B. Gao and Y.-B. Li, A Novel Hydroxyapatite/Ethylene-Vinyl Acetate/Copolymer 66 Composite for Hard Tissue Regeneration, J. Macromol. Sci. Part B, 2012, 51(1), p 1–11.

    Article  CAS  Google Scholar 

  51. L. Wang, J. Palmer, M. Tajvidi, D. Gardner and Y. Han, Thermal Properties of Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites from Extrusion-Based Additive Manufacturing, J. Therm. Anal. Calorim., 2019, 136, p 1069–1077.

    Article  CAS  Google Scholar 

  52. O. Mohamed, S. Masood and J. Bhowmik, Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS, Materials, 2016, 9(11), p 895.

    Article  Google Scholar 

  53. H. Prajapati, D. Ravoori, R. Woods and A. Jain, Measurement of Anisotropic Thermal Conductivity and Inter-Layer Thermal Contact Resistance in Polymer Fused Deposition Modeling (FDM), Addit. Manuf., 2018, 21, p 84–90.

    CAS  Google Scholar 

  54. C. Balderrama-Armendariz, E. MacDonald, D. Espalin, D. Cortes-Saenz, R. Wicker and A. Maldonado-Macias, Torsion Analysis of the Anisotropic Behavior of FDM Technology, Anisotropic Material Properties of Fused Deposition Modeling ABS, Int. J. Adv. Manuf. Technol., 2018, 96, p 307–317.

    Article  Google Scholar 

  55. J. Nelson, D. Atkins, M. Gottstine and J. Yang, Generalized Models for Unidirectional Anisotropic Properties of 3D Printed Polymers, Rapid Prototyp. J., 2020, 26, p 1453–1462.

    Article  Google Scholar 

  56. S. Garzon-Hernandez, A. Arias and D. Garcia-Gonzalez, A Continuum Constitutive Model for FDM 3D Printed Thermoplastics, Compos. Part B Eng., 2020, 201, p 108373.

    Article  CAS  Google Scholar 

  57. F. Kayaci, H.S. Sen, E. Durgun and T. Uyar, Electrospun Nylon 6,6 Nanofibers Functionalized with Cyclodextrins for Removal of Toluene Vapor, J. Appl. Polym. Sci., 2015, 132, p 41941.

    Article  Google Scholar 

  58. A. Rhoadesa, J. Williams and R. Androsch, Crystallization Kinetics of Polyamide 66 At Processing-Relevant Cooling Conditions and High Supercooling, Thermochim. Acta, 2015, 603, p 103–109.

    Article  Google Scholar 

  59. A. Gohna, A. Rhoadesa, N. Wonderling, T. Tighe and R. Androschc, The Effect of Supercooling of the Melt on the Semicrystalline Morphology of PA 66, Thermochim. Acta, 2017, 655, p 313–318.

    Article  Google Scholar 

  60. Q. Meng, Y. Gu, L. Luo, S. Wang, M. Li and Z. Zhang, Annealing Effect on Crystalline Structure and Mechanical Properties in Long Glass Fiber Reinforced Polyamide 66, J. Appl. Polym. Sci., 2017, 134, p 44832.

    Article  Google Scholar 

  61. X. Zhang, X. Xu and T. Wu, Mechanical Properties, Thermal and Crystallization Behavior of Different Surface-Modified Silica Nanoparticle-Filled PA66 Composites, J. Polym. Eng., 2017, 37, p 559–576.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51821093 and 51905478), the Key R&D Program of Zhejiang Province (2020C01033), and the Ningbo Natural Science Foundation (2018A610167 and 2018A610322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congcong Luan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, G., Li, Z., Luan, C. et al. Additive Manufacturing of Polyamide 66: Effect of Process Parameters on Crystallinity and Mechanical Properties. J. of Materi Eng and Perform 31, 191–200 (2022). https://doi.org/10.1007/s11665-021-06149-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06149-6

Keywords

Navigation