Skip to main content
Log in

Additive Manufacturing of PLA and CF/PLA Binding Layer Specimens via Fused Deposition Modeling

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

As one of the most popular additive manufacturing techniques, fused deposition modeling (FDM) is successfully applied in aerospace, automotive, architecture, and other fields to fabricate thermoplastic parts. Unfortunately, as a result of the limited nature of the mechanical properties and mass in raw materials, there is a pressing need to improve mechanical properties and reduce weight for FDM parts. Therefore, this paper presents an experiment of a special polylactic acid (PLA) and carbon fiber (CF)/PLA-laminated experimental specimen fabricated using the FDM process. The mechanical properties and mass analysis of the new composites for the PLA and CF/PLA binding layer specimen are investigated experimentally. Through the experimental analysis, one can conclude that the mass of laminated specimen is lighter than the CF/PLA specimen, and the tensile and flexural mechanical properties are higher than the pure PLA specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Croccolo, M.D. Agostinis, and G. Olmi, Experimental Characterization and Analytical Modelling of the Mechanical Behaviour of Fused Deposition Processed Parts Made of ABS-M30, Comput. Mater. Sci., 2013, 79, p 506–518

    Article  Google Scholar 

  2. E.J. McCullough and V.K. Yadavalli, Surface Modification of Fused Deposition Modeling ABS to Enable Rapid Prototyping of Biomedical Microdevices, Mater. Process. Tech., 2013, 213, p 947–954

    Article  Google Scholar 

  3. N. Hopkinson, C.E. Majewskia, and H. Zarringhalamb, Quantifying the Degree of Particle Melt in Selective Laser Sintering, CIRP Ann-Manuf. Techn., 2009, 58(1), p 197–200

    Article  Google Scholar 

  4. W.L. Zeng, Y.L. Guo, K.Y. Jiang, and Z.X. Yu, Laser Intensity Effect on Mechanical Properties of Wood-Plastic Composite Parts Fabricated by Selective Laser Sintering, J. Thermoplast. Compos., 2012, 26, p 125–136

    Article  Google Scholar 

  5. B. Kolarevic, Digital fabrication: manufacturing architecture in the information age. In Proceedings of Association for Computer Aided Design in Architecture (2001, New York), pp. 268–77

  6. J. Flowers, 3D Laser Scanning in Technology Education, Technol. Teach., 2000, 60(3), p 27–30

    Google Scholar 

  7. S.H. Choi and H.H. Cheung, A Multi-material Virtual Prototyping System, Comput. Aided Des., 2005, 37, p 123–136

    Article  Google Scholar 

  8. A.P. West, S.P. Sambu, and D.W. Rosen, A Process Planning Method for Improving Build Performance in Stereolithography, Comput. Aided Des., 2001, 33(1), p 65–79

    Article  Google Scholar 

  9. J. Park, M.J. Tari, and H.T. Hahn, Characterization of the Laminated Object Manufacturing (LOM) Process, Rapid Prototyp J., 2000, 6(1), p 36–50

    Article  Google Scholar 

  10. J.P. Kruth, X. Wang, T. Laoui, and L. Froyen, Lasers and Materials in Selective Laser Sintering, Assem Autom, 2003, 23(4), p 357–371

    Article  Google Scholar 

  11. M. Too, K. Leong, C. Chua, Z. Du, S.F. Yang, C.M. Cheah, and S.L. Ho, Investigation of 3D Non-random Porous Structures by Fused Deposition Modelling, Int. J. Adv. Manuf. Technol., 2002, 19, p 217–223

    Article  Google Scholar 

  12. C.S. Lee, S.G. Kim, H.J. Kim, and S.H. Ahn, Measurement of Anisotropic Compressive Strength of Rapid Prototyping Parts, J. Mater. Process. Tech., 2007, 187, p 627–630

    Article  Google Scholar 

  13. O.S. Carneiro, A.F. Silva, and R. Gomes, Fused Deposition Modeling with Polypropylene, Mater. Des., 2015, 83, p 768–776

    Article  Google Scholar 

  14. F.D. Ning, W.L. Cong, J.J. Qiu, J.H. Wei, and S.R. Wang, Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling, Compos. Part B-Eng., 2015, 80, p 369–378

    Article  Google Scholar 

  15. S.H. Ahn, M. Montero, D. Odell, S. Roundy, and P.K. Wright, Anisotropic Material Properties of Fused Deposition Modeling ABS, Rapid Prototyp. J., 2002, 8, p 248–257

    Article  Google Scholar 

  16. M. LuãLüa, F. Feuerstein, D. Morina, and R. Hornfeck, Fluid-based removal of inner support structures manufactured by fuse deposition modeling: an investigation on factors of influence, 48th CIRP Conference on MANUFACTURING SYSTEMS—CIRP CMS Procedia CIRP 41 (2015), pp. 1033–1038

  17. M. Nikzad, S.H. Masood, and I. Sbarski, Thermo-Mechanical Properties of a Highly Filled Polymeric Composites for Fused Deposition Modeling, Mater. Des., 2011, 32, p 3448–3456

    Article  Google Scholar 

  18. P. Dudek, FDM 3D Printing Technology in Manufacturing Composite Elements, Arch. Metall. Mater., 2013, 58(4), p 1415–1418

    Google Scholar 

  19. N. Hill and M. Haghi, Deposition Direction-Dependent Failure Criteria for Fused Deposition Modeling Polycarbonate, Rapid Prototyp. J., 2014, 20(3), p 221–227

    Article  Google Scholar 

  20. H.S. Ramanath, C.K. Chua, K.F. Leong, and K.D. Shah, Melt Flow Behaviour of Polyepsilon-caprolactone in Fused Deposition Modeling, J. Mater. Sci. Mater. Med., 2008, 19(7), p 2541–2550

    Article  Google Scholar 

  21. J.M. Chacón, M.A. Caminero, E. García-Plaza, and P.J. Núñez, Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection, Mater. Des., 2017, 124, p p143–p157

    Article  Google Scholar 

  22. M.L. Shofner, K. Lozano, F.J. Rodríguez-Macías, and E.V. Barrera, Nanofiber-Reinforced Polymers Prepared by Fused Deposition Modeling, J. Appl. Polym. Sci., 2003, 89(11), p 3081–3090

    Article  Google Scholar 

  23. H.L. Tekinalp, V. Kunc, G.M. Velez-Garcia, C.E. Duty, L.J. Love, and A.K. Naskar, Highly Oriented Carbon Fiber–Polymer Composites via Additive Manufacturing, Compos. Sci. Technol., 2014, 105, p 144–150

    Article  Google Scholar 

  24. W.H. Zhong, F. Li, Z.G. Zhang, L.L. Song, and Z.M. Li, Short Fiber Reinforced Composites for Fused Deposition Modeling, Mater. Sci. Eng. A Struct., 2001, 301(2), p 125–130

    Article  Google Scholar 

  25. D. Croccolo, M.D. Agostinis, and G. Olmi, Experimental Characterization and Analytical Modelling of the Mechanical Behaviour of Fused Deposition Processed Parts Made of ABS-M30, Comput. Mater. Sci., 2013, 79, p 506–518

    Article  Google Scholar 

  26. K. Oksman, M. Skrifvars, and J.F. Selin, Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites, Compos. Sci. Technol., 2003, 63, p 1317–1324

    Article  Google Scholar 

  27. X.Y. Tian, T.F. Liu, C.C. Yang, Q.G. Wang, and D.C. Li, Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, Compos. Part A, 2016, 88, p 198–205

    Article  Google Scholar 

  28. N.Y. Li, Y.G. Li, and S.T. Liu, Rapid Prototyping of Continuous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing, J. Mater. Process. Tech., 2016, 238, p 218–225

    Article  Google Scholar 

  29. ASTM D638-10, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, 2010

    Google Scholar 

  30. ASTM D790-10, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, 2010

    Google Scholar 

  31. ASTM D1876-01, Standard Test Method For Peel Resistance of Adhesives (T-peel Test), ASTM International, West Conshohocken, 2006

    Google Scholar 

  32. P.M. McGuiggan, A. Chiche, J.J. Filliben, and D.J. Yarusso, Peel of an Adhesive Tape from a Temperature-Gradient Surface, Int. J. Adhes. Adhes., 2008, 28, p 185–191

    Article  Google Scholar 

  33. M.L. Shofner, K. Lozano, F.J. Rodríguez-Macías, and E.V. Barrera, Nano Fiber-Reinforced Polymers Prepared by Fused Deposition Modeling, J. Appl. Polym. Sci., 2003, 89(11), p 3081–3090

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by National Science Foundation of China (No. 51375425), the Fundamental Research Funds for the Postgraduate Student of Hebei Province, China (No. 2016SJSS033), and the Research Funds from School of Yanshan university of China (No. 2015XJSS002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Gao, S., Dong, R. et al. Additive Manufacturing of PLA and CF/PLA Binding Layer Specimens via Fused Deposition Modeling. J. of Materi Eng and Perform 27, 492–500 (2018). https://doi.org/10.1007/s11665-017-3065-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3065-0

Keywords

Navigation