Skip to main content

Advertisement

Log in

Ni(OH)2 Nanoparticles Anchored on Laser- and Alkali-Modified TiO2 Nanotubes Arrays for High-Performance Supercapacitor Application

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A simple and effective approach of dual modification of TiO2 nanotubes (T-NTs) to boost the electronic and electrochemical properties of T-NTs is demonstrated. The T-NTs were doubly modified using alkali treatment and laser irradiation (Na/Las/T-NTs), which led to a fourfold enhancement in capacitance compared to plain T-NTs. Impedance and Mott Schottky analysis showed that the enhanced capacitive performance of the doubly modified T-NTs electrode was due to a decrease in charge transfer resistance by nearly 3 times, a higher charge carrier density value by 1 order of magnitude caused by improved conductivity (alkali treatment), and increased surface area and hydrophilicity (laser irradiation). The Na/Las/T-NTs were then electrodeposited with Ni(OH)2 nanoparticles (Ni-NPs) to further improve the supercapacitive performances. Ni-NPs electrodeposited on the Na/Las/T-NTs substrate exhibited a high specific capacitance value of 108 mF/cm2 (268 mF/g) at a current density of 0.08 mA/cm2. In addition, the substrate had an energy density of 4.7 µWh/cm2 at a power density of 2 mW/cm2 . showing an efficient charge storage capacity compared to most previously reported TiO2 s-based supercapacitors. Furthermore, the proposed supercapacitor possessed an excellent cyclic and electrochemical stability after 6000 cycles with nearly 88% capacitive retention and 90% coulombic efficiency. Overall, the doubly modified T-NTs surface favors improved electronic contact of Ni-NPs that promotes a more feasible electro-redox reaction at the electrode–electrolyte interface, and thereby demonstrates an effective approach to enhance the performance of supercapacitors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.C. Raj and R. Prasanth, Review—Advent of TiO2 Nanotubes as Supercapacitor Electrode. J. Electrochem. Soc. 165, E345 (2018).

    Article  CAS  Google Scholar 

  2. G. Li, J. Li, T. Li, and K. Wang, TiO2 Nanotube Arrays on Silicon Substrate for On-Chip Supercapacitors. J. Power Sources 425, 39 (2019).

    Article  CAS  Google Scholar 

  3. D. Ge, Y. Wang, Z. Hu, A.A. Babangida, and L. Zhang, Porous Silicon Composite ZnO Nanoparticles as Supercapacitor Electrodes. J. Electron. Mater. 51, 2964 (2022).

    Article  CAS  Google Scholar 

  4. R. Liu, L. Ma, S. Huang, J. Mei, J. Xu, and G. Yuan, A Flexible Polyaniline/Graphene/Bacterial Cellulose Supercapacitor Electrode. New J. Chem. 41, 857 (2017).

    Article  CAS  Google Scholar 

  5. A. Śliwak, N. Díez, E. Miniach, and G. Gryglewicz, Nitrogen-Containing Chitosan-based Carbon as an Electrode Material for High-Performance Supercapacitors. J. Appl. Electrochem. 46, 667 (2016).

    Article  Google Scholar 

  6. R. Farma, M. Deraman, I.A. Awitdrus, R. Talib, J.G. Omar, M.M. Manjunatha, B.N.H. Ishak, and B.N.M. Dolah, Physical and Electrochemical Properties of Supercapacitor Electrodes Derived from Carbon Nanotube and Biomass Carbon. Int. J. Electrochem. Sci. 8, 257 (2013).

    CAS  Google Scholar 

  7. H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, and L. Lu, High-Performance and Renewable Supercapacitors Based on TiO2 Nanotube Array Electrodes Treated by an Electrochemical Doping Approach. Electrochim. Acta 116, 129 (2014).

    Article  CAS  Google Scholar 

  8. C. Yu, Y. Wang, J. Zhang, X. Shu, J. Cui, Y. Qin, H. Zheng, J. Liu, Y. Zhang, and Y. Wu, Integration of Mesoporous Nickel Cobalt Oxide Nanosheets with Ultrathin Layer Carbon Wrapped TiO2 Nanotube Arrays for High-Performance Supercapacitors. New J. Chem. 40, 6881 (2016).

    Article  CAS  Google Scholar 

  9. P. Prasannalakshmi, N. Shanmugam, A.S. Kumar, and S. Suthakaran, Zinc Sulfide Decorated Titanium Dioxide Electrodes for Supercapacitor Fabrication. J. Electron. Mater. 51, 2273 (2022).

    Article  CAS  Google Scholar 

  10. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, Hydrogenated TiO2 Nanotube Arrays for Supercapacitors. Nano Lett. 12, 1690 (2012).

    Article  CAS  Google Scholar 

  11. W. Zhong, S. Sang, Y. Liu, Q. Wu, K. Liu, and H. Liu, Electrochemically Conductive Treatment of TiO2 Nanotube Arrays in AlCl3 Aqueous Solution for Supercapacitors. J. Power Sources 294, 216 (2015).

    Article  CAS  Google Scholar 

  12. X. Ning, X. Wang, X. Yu, J. Li, and J. Zhao, Preparation and Capacitance Properties of Mn-Doped TiO2 Nanotube Arrays by Anodisation of Ti-Mn Alloy. J. Alloy. Compd. 658, 177 (2016).

    Article  CAS  Google Scholar 

  13. C. Yang, X. Wang, W. Dong, I.W. Chen, Z. Wang, J. Xu, T. Lin, H. Gu, and F. Huang, Nitrogen-Doped Black Titania for High Performance Supercapacitors. Sci. China Mater. 63, 1227 (2020).

    Article  CAS  Google Scholar 

  14. A. Sarkar, A.K. Singh, D. Sarkar, G.G. Khan, and K. Mandal, Three-Dimensional Nanoarchitecture of BiFeO3 Anchored TiO2 Nanotube Arrays for Electrochemical Energy Storage and Solar Energy Conversion. ACS Sustain. Chem. Eng. 3, 2254 (2015).

    Article  CAS  Google Scholar 

  15. Y.G. Huang, X.H. Zhang, X.B. Chen, H.Q. Wang, J.R. Chen, X.X. Zhong, and Q.Y. Li, Electrochemical Properties of MnO2-Deposited TiO2 Nanotube Arrays 3D Composite Electrode for Supercapacitors. Int. J. Hydrog. Energy 40, 14331 (2015).

    Article  CAS  Google Scholar 

  16. H. Wu, C. Xu, J. Xu, L. Lu, Z. Fan, X. Chen, Y. Song, and D. Li, Enhanced Supercapacitance in Anodic TiO2 Nanotube Films by Hydrogen Plasma Treatment. Nanotechnology 24, 455401 (2013).

    Article  Google Scholar 

  17. Y. Xie, C. Huang, L. Zhou, Y. Liu, and H. Huang, Supercapacitor Application of Nickel Oxide-Titania Nanocomposites. Compos. Sci. Technol. 69, 2108 (2009).

    Article  CAS  Google Scholar 

  18. C. Zhao, P. Ju, S. Wang, Y. Zhang, S. Min, and X. Qian, One-Step Hydrothermal Preparation of TiO2/RGO/Ni(OH)2/NF Electrode with High Performance for Supercapacitors. Electrochim. Acta 218, 216 (2016).

    Article  CAS  Google Scholar 

  19. S. Abd El-Nasser, S. Kim, H. Yoon, R. Toth, K. Pal, and M. Bechelany, Sodium-Assisted TiO2 Nanotube Arrays of Novel Electrodes for Photochemical Sensing Platform. Org. Electron. 76, 105443 (2020).

    Article  CAS  Google Scholar 

  20. S. Sharma, P.N. Sidhartha, and K.N. Chappanda, Influence of Laser and Alkali Treatment on an Ag/TiO2 Nanotube Based Dopamine Sensor. Nanotechnology 33, 015502 (2022).

    Article  CAS  Google Scholar 

  21. J.E. Park, Y.S. Jang, T.S. Bae, and M.H. Lee, Multi-Walled Carbon Nanotube Coating on Alkali Treated TiO2 Nanotubes Surface for Improvement of Biocompatibility. Coatings 8, 159 (2018).

    Article  Google Scholar 

  22. K. Grochowska, N. Nedyalkov, J. Karczewski, Ł Haryński, G. Śliwiński, and K. Siuzdak, Anodic Titania Nanotubes Decorated with Gold Nanoparticles Produced by Laser-induced Dewetting of Thin Metallic Films. Sci. Rep. 10, 1 (2020).

    Article  Google Scholar 

  23. K. Grochowska, Z. Molenda, J. Karczewski, J. Bachmann, K. Darowicki, J. Ryl, and K. Siuzdak, Laser Induced Formation of Copper Species Over TiO2 Nanotubes Towards Enhanced Water Splitting Performance. Int. J. Hydrog. Energy 45, 19192 (2020).

    Article  CAS  Google Scholar 

  24. C.K. Chung, S.L. Lin, S.Y. Cheng, K.P. Chuang, and H.Y. Wang, Effect of Sol-Gel Composition Ratio and Laser Power on Phase Transformation of Crystalline Titanium Dioxide Under CO2 Laser Annealing. Micro Nano Lett. 6, 494 (2011).

    Article  CAS  Google Scholar 

  25. J. Li, L. Zheng, L. Li, G. Shi, Y. Xian, and L. Jin, Ti/TiO2 Electrode Preparation Using Laser Anneal and its Application to Determination of Chemical Oxygen Demand. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 18, 1014 (2006).

    CAS  Google Scholar 

  26. F. Zhao, D. Zheng, Y. Liu, F. Pan, Q. Deng, C. Qin, Y. Li, and Z. Wang, Flexible Co(OH)2/NiOxHy@Ni Hybrid Electrodes for High Energy Density Supercapacitors. Chem. Eng. J. 415, 128871 (2021).

    Article  CAS  Google Scholar 

  27. Q. Ke, C. Guan, X. Zhang, M. Zheng, Y.W. Zhang, Y. Cai, H. Zhang, and J. Wang, Surface-Charge-Mediated Formation of H-TiO2@Ni(OH)2 Heterostructures for High-Performance Supercapacitors. Adv. Mater. 29, 1604164 (2017).

    Article  Google Scholar 

  28. F. Gobal and M. Faraji, Fabrication of Nanoporous Nickel Oxide by De-Zincification of Zn-Ni/(TiO2-nanotubes) for Use in Electrochemical Supercapacitors. Electrochim. Acta 100, 133 (2013).

    Article  CAS  Google Scholar 

  29. S. Sharma, S.K. Ganeshan, S. Kundu, and K.N. Chappanda, Effect of Doping on TiO2 Nanotubes Based Electrochemical Sensors: Glucose Sensing as a Case Study. IEEE Trans. Nanotechnol. 20, 185 (2021).

    Article  CAS  Google Scholar 

  30. K.N. Chappanda, Y.R. Smith, L.W. Rieth, P. Tathireddy, M. Misra, and S.K. Mohanty, Effect of Sputtering Parameters on the Morphology of TiO2 Nanotubes Synthesized from Thin Ti Film on Si Substrate. IEEE Trans. Nanotechnol. 14, 18 (2015).

    Article  Google Scholar 

  31. Y. Lai, H. Zhuang, K. Xie, D. Gong, Y. Tang, L. Sun, C. Lin, and Z. Chen, Fabrication of Uniform Ag/TiO2 Nanotube Array Structures with Enhanced Photoelectrochemical Performance. New J. Chem. 34, 1335 (2010).

    Article  CAS  Google Scholar 

  32. X. Wen, J. Xi, M. Long, L. Tan, J. Wang, P. Yan, L. Zhong, Y. Liu, and A. Tang, Ni(OH)2/Ni Based on TiO2 Nanotube Arrays Binder-Free Electrochemical Sensor for Formaldehyde Accelerated Detection. J. Electroanal. Chem. 805, 68 (2017).

    Article  CAS  Google Scholar 

  33. M. Li, X. Bo, Z. Mu, Y. Zhang, and L. Guo, Electrodeposition of Nickel Oxide and Platinum Nanoparticles on Electrochemically Reduced Graphene Oxide Film as a Nonenzymatic Glucose Sensor. Sens. Actuators B Chem. 192, 261 (2014).

    Article  CAS  Google Scholar 

  34. X. Li, J. Yao, F. Liu, H. He, M. Zhou, N. Mao, P. Xiao, and Y. Zhang, Nickel/copper Nanoparticles Modified TiO2 Nanotubes for Non-Enzymatic Glucose Biosensors. Sens. Actuators B Chem. 181, 501 (2013).

    Article  CAS  Google Scholar 

  35. F. Gobal and M. Faraji, Electrodeposited Polyaniline on Pd-Loaded TiO2 Nanotubes as Active Material for Electrochemical Supercapacitor. J. Electroanal. Chem. 691, 51 (2013).

    Article  CAS  Google Scholar 

  36. Y. Xu, M.A. Melia, L.K. Tsui, J.M. Fitz-Gerald, and G. Zangari, Laser Induced Surface Modification at Anatase TiO2 Nanotube Array Photoanodes for Photoelectrochemical Water Oxidation. J. Phys. Chem. C 121, 17121 (2017).

    Article  CAS  Google Scholar 

  37. S. Yu, X. Peng, G. Cao, M. Zhou, L. Qiao, J. Yao, and H. He, Ni Nanoparticles Decorated Titania Nanotube Arrays as Efficient Nonenzymatic Glucose Sensor. Electrochim. Acta 76, 512 (2012).

    Article  CAS  Google Scholar 

  38. A. Subramanian and H.W. Wang, Effects of Boron Doping in TiO2 Nanotubes and the Performance of Dye-Sensitized Solar Cells. Appl. Surf. Sci. 258, 6479 (2012).

    Article  CAS  Google Scholar 

  39. P. Joshna, A. Hazra, K.N. Chappanda, P.K. Pattnaik, and S. Kundu, Fast Response of UV Photodetector Based on Ag Nanoparticles Embedded Uniform TiO2 Nanotubes Array. Semicond. Sci. Technol. 35, 015001 (2020).

    Article  CAS  Google Scholar 

  40. X. Ren, F. Xu, Z. Peng, Q. Chi, W. Li, J. Wang, T. Tao, W. Ye, and P. Gao, Boosting Visible Light Driven Hydrogen Production: Bifunctional Interface of Ni(OH)2/Pt Cocatalyst on TiO2. Int. J. Hydrog. Energy 45, 16614 (2020).

    Article  CAS  Google Scholar 

  41. L. Haryński, K. Grochowska, J. Karczewski, J. Ryl, and K. Siuzdak, Scalable Route Toward Superior Photoresponse of UV-Laser-Treated TiO2 Nanotubes. ACS Appl. Mater. Interfaces. 12, 3225 (2020).

    Article  Google Scholar 

  42. S. Leong, D. Li, K. Hapgood, X. Zhang, and H. Wang, Ni(OH)2 Decorated Rutile TiO2 for Efficient Removal of Tetracycline from Wastewater. Appl. Catal. B 198, 224 (2016).

    Article  CAS  Google Scholar 

  43. M.A. Barakat, M. Anjum, R. Kumar, Z.O. Alafif, M. Oves, and M.O. Ansari, Design of Ternary Ni(OH)2/Graphene Oxide/TiO2 Nanocomposite for Enhanced Photocatalytic Degradation of Organic, Microbial Contaminants, and Aerobic Digestion of Dairy Wastewater. J. Clean. Prod. 258, 120588 (2020).

    Article  CAS  Google Scholar 

  44. S. Mohajernia, S. Hejazi, A. Mazare, N.T. Nguyen, I. Hwang, S. Kment, G. Zoppellaro, O. Tomanec, R. Zboril, and P. Schmuki, Semimetallic Core-Shell TiO2 Nanotubes as a High Conductivity Scaffold and Use in Efficient 3D-RuO2 Supercapacitors. Mater. Today Energy 6, 46 (2017).

    Article  Google Scholar 

  45. P. Rani, A. Ghorai, S. Roy, D.K. Goswami, A. Midya, and S.K. Ray, Mesoporous GO-TiO2 Nanocomposites for Flexible Solid-State Supercapacitor Applications. Mater. Res. Express 6, 125546 (2019).

    Article  CAS  Google Scholar 

  46. Y. Gu, W. Du, Y. Darrat, M. Saleh, Y. Huang, Z. Zhang, and S. Wei, In Situ Growth of Novel Nickel Diselenide Nanoarrays with High Specific Capacity as the Electrode Material of Flexible Hybrid Supercapacitors. Appl. Nanosci. 10, 1591 (2020).

    Article  CAS  Google Scholar 

  47. Q. Zhu, L. Yao, R. Tong, D. Liu, K.W. Ng, and H. Pan, Cobalt/Titanium Nitride@N-Doped Carbon Hybrids for Enhanced Electrocatalytic Hydrogen Evolution and Supercapacitance. New J. Chem. 43, 14518 (2019).

    Article  CAS  Google Scholar 

  48. H. He, Y. Zhang, P. Xiao, Y. Yang, Q. Lou, and F. Yang, Preparation of Ni Nanoparticles-TiO2 Nanotube Arrays Composite and its Application for Electrochemical Capacitor. Bull. Korean Chem. Soc. 33, 1613 (2012).

    Article  CAS  Google Scholar 

  49. M.S. Vidhya, R. Yuvakkumar, G. Ravi, M. Pannipara, A.G. Al-Sehemi, and D. Velauthapillai, Hydrothermal Synthesis of Cu2Se–CoSe Nanograin for Electrochemical Supercapacitor Applications. Appl. Nanosci. 11, 1881 (2021).

    Article  CAS  Google Scholar 

  50. N. Askari, N. Salarizadeh, and M.B. Askari, Electrochemical Determination of Rutin by Using NiFe2O4 Nanoparticles-Loaded Reduced Graphene Oxide. J. Mater. Sci.: Mater. Electron. 32, 9765 (2021).

    CAS  Google Scholar 

  51. T. Mohammadi, Y. Ghayeb, T. Sharifi, and M.M. Momeni, RuO2 Photodeposited on W-Doped and Cr-Doped TiO2 Nanotubes with Enhanced Photoelectrochemical Water Splitting and Capacitor Properties. New J. Chem. 44, 2339 (2020).

    Article  CAS  Google Scholar 

  52. M. Aghazadeh, Electrochemical Preparation and Properties of Nanostructured Co3O4 as Supercapacitor Material. J. Appl. Electrochem. 42, 89 (2012).

    Article  CAS  Google Scholar 

  53. V. Shrivastav, S. Sundriyal, P. Goel, V. Shrivastav, U.K. Tiwari, and A. Deep, ZIF-67 Derived Co3S4 Hollow Microspheres and WS2 Nanorods as a Hybrid Electrode Material for Flexible 2V Solid-State Supercapacitor. Electrochim. Acta 345, 136194 (2020).

    Article  CAS  Google Scholar 

  54. D. Zheng, F. Zhao, Y. Li, C. Qin, J. Zhu, Q. Hu, Z. Wang, and A. Inoue, Flexible NiO Micro-rods/Nanoporous Ni/metallic Glass Electrode with Sandwich Structure for High Performance Supercapacitors. Electrochim. Acta 297, 767 (2019).

    Article  CAS  Google Scholar 

  55. P. Pazhamalai, K. Krishnamoorthy, V.K. Mariappan, and S. Kim, Blue TiO2 Nanosheets as a High-Performance Electrode Material for Supercapacitors. J. Colloid Interface Sci. 536, 62 (2018).

    Article  Google Scholar 

  56. I. Shakir, Z. Almutairi, S.S. Shar, and A. Nafady, Nickel Hydroxide Nanoparticles and Their Hybrids with Carbon Nanotubes for Electrochemical Energy Storage Applications. Results Phys. 17, 103117 (2020).

    Article  Google Scholar 

  57. X. Li, Z. Zhu, G. Ma, Y. Ding, J. Wang, Z. Ye, X. Peng, and D. Li, Novel Synthesis and Characterization of Flexible MnO2/CNT Composites Co-Deposited on Graphite Paper as Supercapacitor Electrodes. J. Electron. Mater. 51, 2982 (2022).

    Article  CAS  Google Scholar 

  58. M. Zhou, A.M. Glushenkov, O. Kartachova, Y. Li, and Y. Chen, Titanium Dioxide Nanotube Films for Electrochemical Supercapacitors: Biocompatibility and Operation in an Electrolyte Based on a Physiological Fluid. J. Electrochem. Soc. 162, A5065 (2015).

    Article  CAS  Google Scholar 

  59. S. Cao, L. Wu, W. Huang, X. Zhu, X. Shen, and Y. Song, Electrochemically Doped and Hydrogen Peroxide–Treated TiO2 Nanotube Arrays as an Electrode for Supercapacitor with Excellent Cycling Stability. J. Electrochem. Soc. 166, A1944 (2019).

    Article  CAS  Google Scholar 

  60. X.Y. Cao, X. Xing, N. Zhang, H. Gao, M.Y. Zhang, Y.C. Shang, and X.T. Zhang, Quantitative Investigation on the Effect of Hydrogenation on the Performance of MnO2/H-TiO2 Composite Electrodes for Supercapacitors. J. Mater. Chem. A 3, 3785 (2015).

    Article  CAS  Google Scholar 

  61. S.B. Abitkar, P.R. Jadhav, N.L. Tarwal, A.V. Moholkar, and C.E. Patil, A Facile Synthesis of a Ni(OH)2 -CNT Composite Films for Supercapacitor Application. Adv. Powder Technol. 30, 2285 (2019).

    Article  CAS  Google Scholar 

  62. J.M. Chaves, A.L.A. Escada, A.D. Rodrigues, and A.P.R. Alves Claro, Characterization of the Structure, Thermal Stability and Wettability of the TiO2 Nanotubes Growth on the Ti-7.5Mo Alloy Surface. Appl. Surf. Sci. 370, 76 (2016).

    Article  CAS  Google Scholar 

  63. X. Chen, R. Zhu, H. Gao, W. Xu, G. Xiao, and C. Chen, A High Bioactive Alkali-Treated Titanium Surface Induced by Induction Heat Treatment. Surf. Coat. Technol. 385, 125362 (2020).

    Article  CAS  Google Scholar 

  64. J.J. Park, D.Y. Kim, S.S. Latthe, J.G. Lee, M.T. Swihart, and S.S. Yoon, Thermally Induced Superhydrophilicity in TiO2 Films Prepared by Supersonic Aerosol Deposition. ACS Appl. Mater. Interfaces. 5, 6155 (2013).

    Article  CAS  Google Scholar 

  65. D. Yang and A. Laforgue, Laser Surface Roughening of Aluminum Foils for Supercapacitor Current Collectors. J. Electrochem. Soc. 166, A2503 (2019).

    Article  CAS  Google Scholar 

  66. W. Zhang, L. Ding, W. Sun, T. Sheng, Z. Wu, and F. Gao, Ultrasmall Pt Nanoparticles-loaded Crystalline MoO2/Amorphous Ni(OH)2 Hybrid Nano Films with Enhanced Water Dissociation and Sufficient Hydrogen Spillover for Hydrogen Generation. ACS Sustain. Chem. Eng. 9, 8257 (2021).

    Article  CAS  Google Scholar 

  67. S. Sarkar, R. Akshaya, and S. Ghosh, Nitrogen Doped Graphene/CuCr2O4 Nanocomposites for Supercapacitors Application: Effect of Nitrogen Doping on Coulombic Efficiency. Electrochim. Acta 332, 135368 (2020).

    Article  CAS  Google Scholar 

  68. D.J. Ahirrao, H.M. Wilson, and N. Jha, TiO2-Nanoflowers as Flexible Electrode for High Performance Supercapacitor. Appl. Surf. Sci. 491, 765 (2019).

    Article  CAS  Google Scholar 

  69. M.Z. Iqbal, S. Zakar, M. Tayyab, S.S. Haider, M. Alzaid, A.M. Afzal, and S. Aftab, Scrutinizing the Charge Storage Mechanism in SrO Based Composites for Asymmetric Supercapacitors by Diffusion-Controlled Process. Appl. Nanosci. 10, 3999 (2020).

    Article  CAS  Google Scholar 

  70. S. Wang, Z. Xia, Q. Li, and Y. Zhang, Fabrication of Polyaniline/Self-Doped TiO2 Nanotubes Hybrids as Supercapacitor Electrode by Microwave-Assisted Chemical Reduction and Electrochemical Deposition. J. Electrochem. Soc. 164, D901 (2017).

    Article  CAS  Google Scholar 

  71. C. Li, Z. Wang, S. Li, J. Cheng, Y. Zhang, J. Zhou, D. Yang, D.G. Tong, and B. Wang, Interfacial Engineered Polyaniline/Sulfur-Doped TiO2 Nanotube Arrays for Ultralong Cycle Lifetime Fiber-Shaped, Solid-state Supercapacitors. ACS Appl. Mater. Interfaces. 10, 18390 (2018).

    Article  CAS  Google Scholar 

  72. K. Du, P. Lu, G. Liu, X. Chen, and K. Wang, Atomic Layer Deposition of TiN Layer on TiO2 Nanotubes for Enhanced Supercapacitor Performance. in 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) IEEE. (2017), p. 710.

  73. S. Sundriyal, V. Shrivastav, M. Sharma, S. Mishra, and A. Deep, Significantly Enhanced Performance of rGO/TiO2 Nanosheet Composite Electrodes based 1.8 V Symmetrical Supercapacitor with Use of Redox Additive Electrolyte. J. Alloys Compd. 790, 377 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Birla Institute of Technology and Science, Pilani, Hyderabad Campus, India for funding this research project. The work was financially supported by Science and Engineering Research Board grant no. SRG/2019/001378 and by Additional Competitive Research grant no. 912 from the Birla Institute of Technology and Science, Pilani, Hyderabad Campus. The authors also like to extend their sincere appreciation to electronics materials and devices lab, Central Analytical Lab for their immense support in completing the work successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karumbaiah N. Chappanda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5287 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Sidhartha, P.N. & Chappanda, K.N. Ni(OH)2 Nanoparticles Anchored on Laser- and Alkali-Modified TiO2 Nanotubes Arrays for High-Performance Supercapacitor Application. J. Electron. Mater. 52, 483–499 (2023). https://doi.org/10.1007/s11664-022-10016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10016-y

Keywords

Navigation