Skip to main content

Advertisement

Log in

In situ growth of novel nickel diselenide nanoarrays with high specific capacity as the electrode material of flexible hybrid supercapacitors

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Novel nickel diselenide (NiSe2) nanoarrays supported on Ni foams are successfully synthesized by an in situ hydrothermal process. Structural characterizations show that the as-obtained NiSe2 nanoarrays belong to the cubic phase and present the white beech mushroom-like appearance, i.e., the stem diameter about 50–70 nm, the length about 500 nm, and the diameter of the umbrella cover about 50 nm. Controlled experiment results show that the typical mushroom-like NiSe2 nanoarrays can deliver a high specific capacity, low resistance and better cycling stability due to the intrinsic physical properties, and special structural features. More importantly, mushroom-like NiSe2 nanoarrays are further assembled into flexible hybrid supercapacitors with commercial activated carbon as the counter electrodes. This hybrid energy-storage device has 33 Wh kg−1 energy density and 90.3% capacity retention. Meanwhile, it also shows a remarkable mechanical flexibility and high commercial value. Therefore, this work not only proves that the NiSe2 nanoarrays are competitive supercapacitor electrode materials, but also provides a new candidate for flexible, smart, and portable electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An W, Liu L, Gao Y, Liu Y, Liu J (2016) Ni0.9Co1.92Se4 nanostructures: binder-free electrode of coral-like bimetallic selenide for supercapacitors. RSC Adv 6(79):75251–75257

    CAS  Google Scholar 

  • Bao Q, Wu J, Fan L, Ge J, Dong J, Jia J, Zeng J, Lin J (2017) Electrodeposited NiSe2 on carbon fiber cloth as a flexible electrode for high-performance supercapacitors. J Energy Chem 26(6):1252–1259

    Google Scholar 

  • Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50

    CAS  Google Scholar 

  • Cai Q, Li Y, Wang L, Li Q, Xu J, Gao B, Zhang X, Huo K, Chu PK (2017) Freestanding hollow double-shell Se@CNx nanobelts as large-capacity and high-rate cathodes for Li–Se batteries. Nano Energy 32:1–9

    CAS  Google Scholar 

  • Chen H, Jiang J, Zhang L, Xia D, Zhao Y, Guo D, Qi T, Wan H (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257

    CAS  Google Scholar 

  • Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66(1–2):1–14

    CAS  Google Scholar 

  • Deka BK, Hazarika A, Kim J, Kim N, Jeong HE, Park Y-B, Park HW (2019) Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors. Chem Eng J 355:551–559

    CAS  Google Scholar 

  • Dimesso L, Forster C, Jaegermann W, Khanderi JP, Tempel H, Popp A, Engstler J, Schneider JJ, Sarapulova A, Mikhailova D, Schmitt LA, Oswald S, Ehrenberg H (2012) Developments in nanostructured LiMPO4 (M = Fe Co, Ni, Mn) composites based on three dimensional carbon architecture. Chem Soc Rev 41(15):5068–5080

    CAS  Google Scholar 

  • Du W, Wang Z, Zhu Z, Hu S, Zhu X, Shi Y, Pang H, Qian X (2014) Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes. J Mater Chem A 2(25):9613–9619

    CAS  Google Scholar 

  • Du L, Du W, Ren H, Wang N, Yao Z, Shi X, Zhang B, Zai J, Qian X (2017) Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for high-performance hybrid asymmetric supercapacitors. J Mater Chem A 5(43):22527–22535

    CAS  Google Scholar 

  • Du L, Du W, Zhao Y, Wang N, Yao Z, Wei S, Shi Y, Zhang B (2019) Ternary nickel-cobalt selenide nanosheet arrays with enhanced electrochemical performance for hybrid supercapacitors. J Alloy Compd 778:848–857

    CAS  Google Scholar 

  • Duraisamy N, Numan A, Fatin SO, Ramesh K, Ramesh S (2016) Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application. J Colloid Interface Sci 471:136–144

    CAS  Google Scholar 

  • Gao Y, Chen S, Cao D, Wang G, Yin J (2010) Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J Power Sources 195(6):1757–1760

    CAS  Google Scholar 

  • Geng P, Zheng S, Tang H, Zhu R, Zhang L, Cao S, Xue H, Pang H (2018) Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater 8(15):1703259

    Google Scholar 

  • Gong C, Huang M, Zhou P, Sun Z, Fan L, Lin J, Wu J (2016) Mesoporous Co0.85Se nanosheets supported on Ni foam as a positive electrode material for asymmetric supercapacitor. Appl Surf Sci 362:469–476

    CAS  Google Scholar 

  • Gopalakrishnan A, Kong CY, Badhulika S (2019a) Scalable, large-area synthesis of heteroatom-doped few-layer graphene-like microporous carbon nanosheets from biomass for high-capacitance supercapacitors. New J Chem 43(3):1186–1194

    CAS  Google Scholar 

  • Gopalakrishnan A, Yang D, Ince JC, Truong YB, Yu A, Badhulika S (2019b) Facile one-pot synthesis of hollow NiCoP nanospheres via thermal decomposition technique and its free-standing carbon composite for supercapacitor application. J Energy Storage 25:100893

    Google Scholar 

  • Guo D, Lai L, Cao A, Liu H, Dou S, Ma J (2015) Nanoarrays: design, preparation and supercapacitor applications. RSC Adv 5(69):55856–55869

    CAS  Google Scholar 

  • Guo K, Cui S, Hou H, Chen W, Mi L (2016) Hierarchical ternary Ni–Co–Se nanowires for high-performance supercapacitor device design. Dalton T 45(48):19458–19465

    CAS  Google Scholar 

  • Hong W, Wang J, Gong P, Sun J, Niu L, Yang Z, Wang Z, Yang S (2014) Rational construction of three dimensional hybrid Co3O4 @NiMoO4 nanosheets array for energy storage application. J Power Sources 270:516–525

    CAS  Google Scholar 

  • Hu C-C, Chang K-H, Lin M-C, Wu Y-T (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6(12):2690–2695

    CAS  Google Scholar 

  • Hu W, Chen R, Xie W, Zou L, Qin N, Bao D (2014) CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Interfaces 6(21):19318–19326

    CAS  Google Scholar 

  • Huang K, Zhang J, Fan Y (2015) Preparation of layered MoSe2 nanosheets on Ni-foam substrate with enhanced supercapacitor performance. Mater Lett 152:244–247

    CAS  Google Scholar 

  • Huang S, Zhang W, Cui S, Chen W, Mi L (2017) Sequential partial ion exchange synthesis of composite Ni3S2/Co9S8/NiSe nanoarrays with a lavender-like hierarchical morphology. Inorg Chem Front 4(4):727–735

    CAS  Google Scholar 

  • Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24(38):5166–5180

    CAS  Google Scholar 

  • Lee Y-H, Yun Y-H, Hong Vinh Quy V, Kang S-H, Kim H, Vijayakumar E, Ahn K-S (2019) Preparation of nickel selenide by pulsed-voltage electrodeposition and its application as a highly-efficient electrocatalyst at counter electrodes of quantum-dot sensitized solar cells. Electrochim Acta 296:364–371

    CAS  Google Scholar 

  • Lu X, Yu M, Wang G, Tong Y, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 7(7):2160–2181

    Google Scholar 

  • Mai L, Tian X, Xu X, Chang L, Xu L (2014) Nanowire electrodes for electrochemical energy storage devices. Chem Rev 114(23):11828–11862

    CAS  Google Scholar 

  • Manikandan M, Subramani K, Sathish M, Dhanuskodi S (2018) NiTe nanorods as electrode material for high performance supercapacitor applications. ChemistrySelect 3(31):9034–9040

    CAS  Google Scholar 

  • Mei L, Yang T, Xu C, Zhang M, Chen L, Li Q, Wang T (2014) Hierarchical mushroom-like CoNi2S4 arrays as a novel electrode material for supercapacitors. Nano Energy 3:36–45

    CAS  Google Scholar 

  • Naoi K, Naoi W, Aoyagi S, Miyamoto J-i, Kamino T (2013) New generation “nanohybrid supercapacitor". Acc Chem Res 46(5):1075–1083

    CAS  Google Scholar 

  • Nyholm L, Nystrom G, Mihranyan A, Stromme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23(33):3751–3769

    CAS  Google Scholar 

  • Pan GX, Xia X, Cao F, Tang PS, Chen HF (2012) Porous Co(OH)2/Ni composite nanoflake array for high performance supercapacitors. Electrochim Acta 63:335–340

    CAS  Google Scholar 

  • Peng H, Ma G, Sun K, Zhang Z, Li J, Zhou X, Lei Z (2015) A novel aqueous asymmetric supercapacitor based on petal-like cobalt selenide nanosheets and nitrogen-doped porous carbon networks electrodes. J Power Sources 297:351–358

    CAS  Google Scholar 

  • Peng H, Zhou J, Sun K, Ma G, Zhang Z, Feng E, Lei Z (2017) High-performance asymmetric supercapacitor designed with a novel NiSe@MoSe2 nanosheet array and nitrogen-doped carbon nanosheet. ACS Sustain Chem Eng 5(7):5951–5963

    CAS  Google Scholar 

  • Pu J, Wang Z, Wu K, Yu N, Sheng E (2014) Co9S8 nanotube arrays supported on nickel foam for high-performance supercapacitors. Phys Chem Chem Phys 16(2):785–791

    CAS  Google Scholar 

  • Song D, Wang H, Wang X, Yu B, Chen Y (2017) NiSe2 nanoparticles embedded in carbon nanowires as highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim Acta 254:230–237

    CAS  Google Scholar 

  • Tan C, Cao X, Wu X, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G-H, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117(9):6225–6331

    CAS  Google Scholar 

  • Tang C, Pu Z, Liu Q, Asiri AM, Sun X (2015a) NiS2 nanosheets array grown on carbon cloth as an efficient 3D hydrogen evolution cathode. Electrochim Acta 153:508–514

    CAS  Google Scholar 

  • Tang C, Pu Z, Liu Q, Asiri AM, Sun X, Luo Y, He Y (2015b) In situ growth of NiSe nanowire film on nickel foam as an electrode for high-performance supercapacitors. ChemElectroChem 2(12):1903–1907

    CAS  Google Scholar 

  • Tang H, Yuan Y, Meng L, Wang W, Lu J, Zeng Y, Huang T, Gao C (2018) Low-resistance porous nanocellular MnSe electrodes for high-performance all-solid-state battery-supercapacitor hybrid devices. Adv Mater Technol 3(7):1800074

    Google Scholar 

  • Veeralingam S, Sahatiya P, Kadu A, Mattela V, Badhulika S (2019) Direct, one-step growth of NiSe2 on cellulose paper: a low-cost, flexible, and wearable with smartphone enabled multifunctional sensing platform for customized noninvasive personal healthcare monitoring. ACS Appl Electron Mater 1(4):558–568

    CAS  Google Scholar 

  • Vishnu N, Sahatiya P, Kong C, Badhulika S (2019) Large area, one step synthesis of NiSe2 films on cellulose paper for glucose monitoring in bio-mimicking samples for clinical diagnostics. Nanotechnology 30(35):355502

    CAS  Google Scholar 

  • Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25(37):5336–5342

    CAS  Google Scholar 

  • Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132(21):7472–7477

    CAS  Google Scholar 

  • Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26(28):4763–4782

    CAS  Google Scholar 

  • Wang F, Li Y, Shifa TA, Liu K, Wang F, Wang Z, Xu P, Wang Q, He J (2016) Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angew Chem Int Ed 55(24):6919–6924

    CAS  Google Scholar 

  • Wang S, Li W, Xin L, Wu M, Long Y, Huang H, Lou X (2017) Facile synthesis of truncated cube-like NiSe2 single crystals for high-performance asymmetric supercapacitors. Chem Eng J 330:1334–1341

    CAS  Google Scholar 

  • Wei W, Mi L, Gao Y, Zheng Z, Chen W, Guan X (2014) Partial ion-exchange of nickel-sulfide-derived electrodes for high performance supercapacitors. Chem Mater 26(11):3418–3426

    CAS  Google Scholar 

  • Xia C, Jiang Q, Zhao C, Beaujuge PM, Alshareef HN (2016) Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes. Nano Energy 24:78–86

    CAS  Google Scholar 

  • Xu Y, Du W, Du L, Zhu W, Guo W, Chang J, Zhang B, Deng D (2017) Monocrystalline NiS nanowire arrays supported by Ni foam as binder-free electrodes with outstanding performances. RSC Adv 7(36):22553–22557

    CAS  Google Scholar 

  • Yang S, Liu Y, Hao Y, Yang X, Goddard WA, Zhang X, Cao B (2018) Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv Sci 5(4):1700659

    Google Scholar 

  • Yang X, Wang S, Yu DYW, Rogach AL (2019) Direct conversion of metal-organic frameworks into selenium/selenide/carbon composites with high sodium storage capacity. Nano Energy 58:392–398

    CAS  Google Scholar 

  • Ye B, Huang M, Bao Q, Jiang S, Ge J, Zhao H, Fan L, Lin J, Wu J (2018) Construction of NiTe/NiSe composites on Ni foam for high-performance asymmetric supercapacitor. ChemElectroChem 5(3):507–514

    CAS  Google Scholar 

  • Yu X, Sun W, Chu Y (2014) One-pot solvothermal synthesis and properties of 1D NiSe and NiSe–Ni3S2 alloyed compound nanorod arrays. New J Chem 38(1):70–76

    Google Scholar 

  • Yu N, Zhu M-Q, Chen D (2015) Flexible all-solid-state asymmetric supercapacitors with three-dimensional CoSe2/carbon cloth electrodes. J Mater Chem A 3:7910–7918

    CAS  Google Scholar 

  • Yu S, Zhang Y, Lou G, Wu Y, Zhu X, Chen H, Shen Z, Fu S, Bao B, Wu L (2018) Synthesis of NiMn-LDH Nanosheet@Ni3S2 nanorod hybrid structures for supercapacitor electrode materials with ultrahigh specific capacitance. Sci Rep 8(1):5246

    Google Scholar 

  • Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    CAS  Google Scholar 

  • Zhang Z, Du W, Ren X, Shen Z, Fan X, Wei S, Wei C, Cao Z, Zhang B (2019) Ni(OH)2-Co2(OH)3Cl bilayer nanocomposites supported by Ni foams for binder-free electrodes of high-performance hybrid supercapacitors. Appl Surf Sci 469:624–633

    CAS  Google Scholar 

Download references

Acknowledgements

All the authors sincerely acknowledge the financial support from the China Scholarship Council—Henan Province Local Cooperation Project (201708410285), Plan for Scientific Innovation Talent of Henan Province (174200510017), Basic Research Plan of Key Scientific Research Projects in the Colleges and Universities of Henan Province (20ZX007), and Special Projects of New Energy Vehicle Development of Anyang City (2017-480-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1910 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Du, W., Darrat, Y. et al. In situ growth of novel nickel diselenide nanoarrays with high specific capacity as the electrode material of flexible hybrid supercapacitors. Appl Nanosci 10, 1591–1601 (2020). https://doi.org/10.1007/s13204-019-01234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01234-8

Keywords

Navigation