Skip to main content

Advertisement

Log in

Scrutinizing the charge storage mechanism in SrO based composites for asymmetric supercapacitors by diffusion-controlled process

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Optimization of suitable electrode material flashing high electrochemical performance is the main hindrance in energy storage applications. Metal oxide-based electrode materials are promising candidate which greatly promotes the sustainable development. Herein, strontium oxide (SrO) is synthesized from sonochemical method followed by calcination. Incorporating polyaniline (PANI) and graphene (Gr) intensify the materials performance. Three asymmetric devices are designed using SrO, its composites (SrO/PANI and SrO/PANI/Gr) and activated carbon (AC) as an electrode and electrolyte-soaked separators are sandwiched in solidly packed cell assembly. Electrochemical measurements are performed to scrutinize the inherent properties. After that, Dunn’s model is applied to evaluate the capacitive and diffusion-controlled contributions. The obtained result divulges that SrO/PANI/Gr//AC exhibits more diffusive-controlled contribution and reveals a battery type behavior due to the contribution of PANI in redox reactions. Thus, this work delivers a route to synthesize metal oxides-based composites and a systematic approach to analyze the charge storage mechanism in asymmetric supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aguadero A et al (2012) Materials development for intermediate-temperature solid oxide electrochemical devices. J Mater Sci 47(9):3925–3948

    CAS  Google Scholar 

  • Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145

    Google Scholar 

  • Ameen S, Shaheer Akhtar M, Husain M (2010) A review on synthesis processing, chemical and conduction properties of polyaniline and its nanocomposites. Sci Adv Mater 2(4):441–462

    CAS  Google Scholar 

  • Ameen S et al (2011) Polyaniline/gallium doped ZnO heterostructure device via plasma enhanced polymerization technique: preparation, characterization and electrical properties. Microchim Acta 172(3–4):471–478

    CAS  Google Scholar 

  • Ameen S et al (2012) Synthesis and electrochemical impedance properties of CdS nanoparticles decorated polyaniline nanorods. Chem Eng J 181:806–812

    Google Scholar 

  • Ardizzone S, Fregonara G, Trasatti S (1990) “Inner” and “outer” active surface of RuO2 electrodes. Electrochim Acta 35(1):263–267

    CAS  Google Scholar 

  • Brezesinski T et al (2010) Ordered mesoporous α-MoO 3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9(2):146

    CAS  Google Scholar 

  • Chen K, Xue D (2017) Colloidal paradigm in supercapattery electrode systems. Nanotechnology 29(2):024003

    Google Scholar 

  • Chen Z et al (2012) High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6(5):4319–4327

    CAS  Google Scholar 

  • Dai L et al (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8(8):1130–1166

    CAS  Google Scholar 

  • Di Fabio A et al (2001) Carbon-poly (3-methylthiophene) hybrid supercapacitors. J Electrochem Soc 148(8):A845–A850

    Google Scholar 

  • Dou Y et al (2016) Atomically thin Co3O4 nanosheet-coated stainless steel mesh with enhanced capacitive Na + storage for high-performance sodium-ion batteries. 2D Mater 4(1):015022

    Google Scholar 

  • Du Pasquier A et al (2003) A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J Power Sour 115(1):171–178

    Google Scholar 

  • Du X et al (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491

    CAS  Google Scholar 

  • Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    CAS  Google Scholar 

  • Duraisamy N et al (2016) Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application. J Colloid Interface Sci 471:136–144

    CAS  Google Scholar 

  • Dylla AG, Henkelman G, Stevenson KJ (2013) Lithium insertion in nanostructured TiO2 (B) architectures. Acc Chem Res 46(5):1104–1112

    CAS  Google Scholar 

  • Fan Q et al (2016) Activated-nitrogen-doped graphene-based aerogel composites as cathode materials for high energy density lithium-ion supercapacitor. J Electrochem Soc 163(8):A1736–A1742

    CAS  Google Scholar 

  • Fang Q et al (2001) Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors. J Electrochem Soc 148(8):A833–A837

    CAS  Google Scholar 

  • Faraji S, Ani FN (2014) Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—a review. J Power Sour 263:338–360

    CAS  Google Scholar 

  • Fu L et al (2019) Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds? J Mater Chem A 7(25):14937–14970

    CAS  Google Scholar 

  • Ganesh V, Pitchumani S, Lakshminarayanan V (2006) New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. J Power Sour 158(2):1523–1532

    CAS  Google Scholar 

  • Gao Z et al (2016) A perspective on low-temperature solid oxide fuel cells. Energy Environ Sci 9(5):1602–1644

    CAS  Google Scholar 

  • Girard H-L, Dunn B, Pilon L (2016) Simulations and interpretation of three-electrode cyclic voltammograms of pseudocapacitive electrodes. Electrochim Acta 211:420–429

    CAS  Google Scholar 

  • Goodenough JB (2012) Evolution of strategies for modern rechargeable batteries. Acc Chem Res 46(5):1053–1061

    Google Scholar 

  • Goodenough JB (2014) Electrochemical energy storage in a sustainable modern society. Energy Environ Sci 7(1):14–18

    CAS  Google Scholar 

  • Hu Z et al (2015) Pyrite FeS 2 for high-rate and long-life rechargeable sodium batteries. Energy Environ Sci 8(4):1309–1316

    CAS  Google Scholar 

  • Iqbal MZ et al (2019a) Ultrasonication-assisted synthesis of novel strontium based mixed phase structures for supercapattery devices. Ultrasonics Sonochem 104736

  • Iqbal MZ, Nabi J, Siddique S, Awan HTA, Haider SS, Sulman M (2019b) Role of graphene andtransition metal dichalcogenides as hole transport layer and counter electrode in solar cells. Int J Energy Res 44(3):1464–1487

    Google Scholar 

  • Iqbal MZ, Haider SS, Siddique S, Karim MRA, Zakar S, Tayyab M, Faisal MM, Sulman M, Khan A, Baghayeri M, Kamran MA, Alherbi T, Iqbal MJ, Hussain T (2020a) Capacitiveand diffusion-controlled mechanism of strontium oxide based symmetric and asymmetric devices. J Energy Storage 27:101056

    Google Scholar 

  • Iqbal MZ, Siddique S, Khan A, Haider SS, Khalid M (2020b) Recent developments in graphene based novel structures forefficient and durable fuel cells. Mat Res Bulletin 122:110674

    CAS  Google Scholar 

  • Iqbal MZ, Haider SS, Zakar S, Numan A, Afzal AM, Kamran MA (2020c) Cobalt-oxide/carbon composites for asymmetric solid-state supercapacitors. Mat Res Bulletin 110974

  • Iqbal MZ, Zakar S, Haider SS (2020d) Role of aqueous electrolytes on the performance of electrochemical energy storage device. J Electroanal Chem 858:113793

    CAS  Google Scholar 

  • Kalu E et al (2001) Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide. J Power Sour 92(1–2):163–167

    CAS  Google Scholar 

  • Kong L et al (2016) Nanoarchitectured Nb 2 O 5 hollow, Nb 2 O 5@ carbon and NbO 2@ carbon core-shell microspheres for ultrahigh-rate intercalation pseudocapacitors. Sci Rep 6:21177

    CAS  Google Scholar 

  • Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15–16):2483–2498

    Google Scholar 

  • Kou T et al (2017) Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors. J Mater Chem A 5(33):17151–17173

    CAS  Google Scholar 

  • Kuilla T et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375

    CAS  Google Scholar 

  • Laforgue A et al (2001) Hybrid supercapacitors based on activated carbons and conducting polymers. J Electrochem Soc 148(10):A1130–A1134

    CAS  Google Scholar 

  • Larcher D, Tarascon J-M (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19

    CAS  Google Scholar 

  • Lee C et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    CAS  Google Scholar 

  • Li D, Kaner RB (2008) Graphene-based materials. Science 320(5880):1170–1171

    CAS  Google Scholar 

  • Li S et al (2015) Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 12:224–230

    CAS  Google Scholar 

  • Lindström H et al (1997a) Li + ion insertion in TiO2 (anatase). 1. Chronoamperometry on CVD films and nanoporous films. J Phys Chem B 101(39):7710–7716

    Google Scholar 

  • Lindström H et al (1997b) Li + ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B 101(39):7717–7722

    Google Scholar 

  • Liu T et al (2017) Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J Mater Chem A 5(34):17705–17733

    CAS  Google Scholar 

  • Lu Q, Chen JG, Xiao JQ (2013a) Nanostructured electrodes for high-performance pseudocapacitors. Angew Chem Int Ed 52(7):1882–1889

    CAS  Google Scholar 

  • Lu Y et al (2013b) Facile synthesis of Ni-coated Ni 2 P for supercapacitor applications. CrystEngComm 15(35):7071–7079

    CAS  Google Scholar 

  • Lubimtsev AA et al (2013) Understanding the origin of high-rate intercalation pseudocapacitance in Nb 2 O 5 crystals. J Mater Chem A 1(47):14951–14956

    CAS  Google Scholar 

  • Lübke M et al (2015) Highly pseudocapacitive Nb-doped TiO2 high power anodes for lithium-ion batteries. J Mater Chem A 3(45):22908–22914

    Google Scholar 

  • Luo J-Y, Xia Y-Y (2009) Electrochemical profile of an asymmetric supercapacitor using carbon-coated LiTi2 (PO4) 3 and active carbon electrodes. J Power Sour 186(1):224–227

    CAS  Google Scholar 

  • Mastragostino M et al (2000) Polymer selection and cell design for electric-vehicle supercapacitors. J Electrochem Soc 147(2):407–412

    CAS  Google Scholar 

  • Morimoto T et al (1996) Electric double-layer capacitor using organic electrolyte. J Power Sour 60(2):239–247

    CAS  Google Scholar 

  • Naor EO, Koberg M, Gedanken A (2017) Nonaqueous synthesis of SrO nanopowder and SrO/SiO2 composite and their application for biodiesel production via microwave irradiation. Renew Energy 101:493–499

    CAS  Google Scholar 

  • Omar FS et al (2017) A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor. J Alloy Compd 716:96–105

    CAS  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217

    CAS  Google Scholar 

  • Pinjari D et al (2015) Synthesis of titanium dioxide by ultrasound assisted sol–gel technique: effect of calcination and sonication time. Ultrason Sonochem 23:185–191

    CAS  Google Scholar 

  • Prasad K et al (2010) Synthesis of titanium dioxide by ultrasound assisted sol–gel technique: effect of amplitude (power density) variation. Ultrason Sonochem 17(4):697–703

    CAS  Google Scholar 

  • Ren B et al (2013) Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode. Electrochim Acta 92:197–204

    CAS  Google Scholar 

  • Shahabuddin S et al (2019) Polyaniline-SrTiO3 nanocube based binary nanocomposite as highly stable electrode material for high performance supercapaterry. Ceram Int 45(9):11428–11437

    CAS  Google Scholar 

  • Shanmugavalli V et al (2019) A study of charge density distribution and enhanced electrochemical properties of zinc cobaltite/polyaniline nanocomposite for supercapacitor application. Ionics 25(9):4393–4408

    CAS  Google Scholar 

  • Simon P, Gogotsi Y (2010) Materials for electrochemical capacitors, in nanoscience and technology: a collection of reviews from nature journals. World Sci 7:320–329

  • Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sour 196(1):1–12

    CAS  Google Scholar 

  • Søgaard M, Hendriksen PV, Mogensen M (2007) Oxygen nonstoichiometry and transport properties of strontium substituted lanthanum ferrite. J Solid State Chem 180(4):1489–1503

    Google Scholar 

  • Stoller MD et al (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502

    CAS  Google Scholar 

  • Thounthong P, Rael S, Davat B (2009) Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. J Power Sour 193(1):376–385

    CAS  Google Scholar 

  • Vidyadharan B et al (2014) High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode. J Power Sour 270:526–535

    CAS  Google Scholar 

  • Wang J et al (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111(40):14925–14931

    CAS  Google Scholar 

  • Wang D et al (2009) Self-assembled TiO2—graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3(4):907–914

    CAS  Google Scholar 

  • Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    CAS  Google Scholar 

  • Wang K et al (2014) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1):14–31

    CAS  Google Scholar 

  • Wang Z et al (2015) Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 9(7):7563–7571

    CAS  Google Scholar 

  • Xia X et al (2011) Three-dimentional porous nano-Ni/Co (OH) 2 nanoflake composite film: a pseudocapacitive material with superior performance. J Phys Chem C 115(45):22662–22668

    CAS  Google Scholar 

  • Xiang C et al (2013) A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J Power Sour 226:65–70

    CAS  Google Scholar 

  • Xiong G et al (2014) graphitic petal electrodes for all-solid-state flexible supercapacitors. Adv Energy Mater 4(3):1300515

    Google Scholar 

  • Yan C et al (2014) Graphene/polyaniline nanocomposite as electrode material for membrane capacitive deionization. Desalination 344:274–279

    CAS  Google Scholar 

  • Yan L et al (2016) Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. Nanoscale 8(16):8443–8465

    CAS  Google Scholar 

  • Yang C et al (2017) Cr0. 5Nb24. 5O62 nanowires with high electronic conductivity for high-rate and long-life lithium-ion storage. ACS Nano 11(4):4217–4224

    CAS  Google Scholar 

  • Zheng J, Jow T (1995) A new charge storage mechanism for electrochemical capacitors. J Electrochem Soc 142(1):L6–L8

    CAS  Google Scholar 

  • Zhou Y et al (2010) Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials. Electrochim Acta 55(12):3904–3908

    CAS  Google Scholar 

  • Zhou W et al (2014) Flexible wire-like all-carbon supercapacitors based on porous core–shell carbon fibers. J Mater Chem A 2(20):7250–7255

    CAS  Google Scholar 

  • Zuo W et al (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4(7):1600539

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Higher Education Commission (HEC) of Pakistan under the National Research Program for Universities (NRPU) with project Grant no. 5544/KPK/NRPU/R&D/HEC/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zahir Iqbal.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M.Z., Zakar, S., Tayyab, M. et al. Scrutinizing the charge storage mechanism in SrO based composites for asymmetric supercapacitors by diffusion-controlled process. Appl Nanosci 10, 3999–4011 (2020). https://doi.org/10.1007/s13204-020-01542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01542-4

Keywords

Navigation