Skip to main content
Log in

Anodic TiO2 nanotube supercapacitors enhanced by a facile in situ doping method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the capacitive properties of anodic TiO2 nanotubes were enhanced by a facile in situ doping method. The tuning of TiO2 anodization was realized by adding Fe(NO3)3 into the aqueous HF solution as the dopant. The morphology, structure, chemical composition and capacitive properties of the as-prepared TiO2 nanotubes were characterized by various methods. It is found that N, F, and Fe elements can be doped into TiO2 nanotubes during the anodization process. The effect of doping concentration on the capacitive properties of TiO2 nanotubes was also investigated. With the optimum doping concentration of ~ 0.02 M, the doped TiO2 nanotubes exhibited a capacitance of 1.11 mF cm−2 at the scan rate of 100 mV s−1, much higher than that of the undoped TiO2 nanotubes. The X-ray photoelectron spectroscopy (XPS) results indicated the presence of N, F, and Fe in the TiO2 lattice and absorbed F on the TiO2 surface, both of which are believed to be the cause for the capacitance enhancement of the doped TiO2 nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Acerce, D. Voiry, M. Chhowalla, Nat. Nano 10, 313 (2015)

    Article  CAS  Google Scholar 

  2. C. Zhou, Y. Zhang, Y. Li, J. Liu, Nano Lett. 13, 2078 (2013)

    Article  CAS  Google Scholar 

  3. R.R. Salunkhe, J. Lin, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Nano Energy 11, 211 (2015)

    Article  CAS  Google Scholar 

  4. C. Qu, Z. Liang, Y. Jiao, B. Zhao, B. Zhu, D. Dang, S. Dai, Y. Chen, R. Zou, M. Liu, Small 14(3), 1800285 (2018)

    Article  Google Scholar 

  5. V.C. Anitha, A.N. Banerjee, G.R. Dillip, S.W. Joo, B.K. Min, J. Phys. Chem. C 120, 9569 (2016)

    Article  CAS  Google Scholar 

  6. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett. 12, 1690 (2012)

    Article  CAS  Google Scholar 

  7. H. Zhou, Y. Zhang, J. Phys. Chem. C 118, 5626 (2014)

    Article  CAS  Google Scholar 

  8. C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Nano Lett. 6, 2690 (2006)

    Article  CAS  Google Scholar 

  9. Y. Yang, D. Kim, P. Schmuki, Chem. Asian J. 6, 2916 (2011)

    Article  CAS  Google Scholar 

  10. Y. Yang, D. Kim, M. Yang, P. Schmuki, Chem. Commun. 47, 7746 (2011)

    Article  CAS  Google Scholar 

  11. X. Ning, X. Wang, X. Yu, J. Li, J. Zhao, J. Alloys Compd. 658, 177 (2016)

    Article  CAS  Google Scholar 

  12. S.A. Al-Thabaiti, R. Hahn, N. Liu, R. Kirchgeorg, S. So, P. Schmuki, S.N. Basahel, S.M. Bawaked, Chem. Commun. 50, 7960 (2014)

    Article  CAS  Google Scholar 

  13. C. Zhang, L. Li, C.-C. Tuan, J. Zhou, F. Xue, C.-P. Wong, J. Mater. Sci. 29, 15130 (2018)

    CAS  Google Scholar 

  14. R.P. Vitiello, J.M. Macak, A. Ghicov, H. Tsuchiya, L.F.P. Dick, P. Schmuki, Electrochem. Commun. 8, 544 (2006)

    Article  CAS  Google Scholar 

  15. C. Kim, S. Kim, J. Lee, J. Kim, J. Yoon, ACS Appl. Mater. Interfaces. 7, 7486 (2015)

    Article  CAS  Google Scholar 

  16. H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, L. Lu, Electrochim. Acta 116, 129 (2014)

    Article  CAS  Google Scholar 

  17. Y. Qin, J. Zhang, Y. Wang, X. Shu, C. Yu, J. Cui, H. Zheng, Y. Zhang, Y. Wu, RSC Adv. 6, 47669 (2016)

    Article  CAS  Google Scholar 

  18. J. Yu, Z. Wu, C. Gong, W. Xiao, L. Sun, C. Lin, Nanomaterials 6, 107 (2016)

    Article  Google Scholar 

  19. L. Deng, S. Wang, D. Liu, B. Zhu, W. Huang, S. Wu, S. Zhang, Catal. Lett. 129, 513 (2009)

    Article  CAS  Google Scholar 

  20. M. Xing, Y. Wu, J. Zhang, F. Chen, Nanoscale 2, 1233 (2010)

    Article  CAS  Google Scholar 

  21. L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, Sol. Energy Mater. Sol. Cells 93, 1875 (2009)

    Article  CAS  Google Scholar 

  22. Z. Hua, Z. Dai, X. Bai, Z. Ye, H. Gu, X. Huang, J. Hazard. Mater. 293, 112 (2015)

    Article  CAS  Google Scholar 

  23. Y. Zhang, F. Lv, T. Wu, L. Yu, R. Zhang, B. Shen, X. Meng, Z. Ye, P.K. Chu, J. Sol-Gel. Sci. Technol. 59, 387 (2011)

    Article  CAS  Google Scholar 

  24. D. Dolat, S. Mozia, B. Ohtani, A.W. Morawski, Chem. Eng. J. 225, 358 (2013)

    Article  CAS  Google Scholar 

  25. M. Salari, S.H. Aboutalebi, K. Konstantinov, H.K. Liu, Phys. Chem. Chem. Phys. 13, 5038 (2011)

    Article  CAS  Google Scholar 

  26. M. Salari, K. Konstantinov, H.K. Liu, J. Mater. Chem. 21, 5128 (2011)

    Article  CAS  Google Scholar 

  27. M.-S. Wu, Z.-S. Guo, J.-J. Jow, J. Phys. Chem. C 114, 21861 (2010)

    Article  CAS  Google Scholar 

  28. L. Li, B. Song, L. Maurer, Z. Lin, G. Lian, C.-C. Tuan, K.-S. Moon, C.-P. Wong, Nano Energy 21, 276 (2016)

    Article  CAS  Google Scholar 

  29. E. McCafferty, J.P. Wightman, Surf. Interface Anal. 26, 549 (1998)

    Article  CAS  Google Scholar 

  30. B. Siemensmeyer, J.W. Schultze, Surf. Interface Anal. 16, 309 (1990)

    Article  CAS  Google Scholar 

  31. D. Choi, G.E. Blomgren, P.N. Kumta, Adv. Mater. 18, 1178 (2006)

    Article  CAS  Google Scholar 

  32. F. Dong, H. Wang, Z. Wu, J. Qiu, J. Colloid Interface Sci. 343, 200 (2010)

    Article  CAS  Google Scholar 

  33. Y. Wu, M. Xing, B. Tian, J. Zhang, F. Chen, Chem. Eng. J. 162, 710 (2010)

    Article  CAS  Google Scholar 

  34. Y. Cong, J. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C 111, 6976 (2007)

    Article  CAS  Google Scholar 

  35. Y. Xie, Y. Li, X. Zhao, J. Mol. Catal. Chem. 277, 119 (2007)

    Article  CAS  Google Scholar 

  36. D. Li, H. Haneda, S. Hishita, N. Ohashi, Chem. Mater. 17, 2588 (2005)

    Article  CAS  Google Scholar 

  37. D. Li, H. Haneda, S. Hishita, N. Ohashi, N.K. Labhsetwar, J. Fluor. Chem. 126, 69 (2005)

    Article  CAS  Google Scholar 

  38. C.-H. Chan, P. Samikkannu, H.-W. Wang, Int. J. Hydrog. Energy 41, 17818 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (ASMA201602), Open Fund of Key Laboratory of Materials Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology No. 56XCA17006-1 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhou or Feng Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Tian, S., Xu, C. et al. Anodic TiO2 nanotube supercapacitors enhanced by a facile in situ doping method. J Mater Sci: Mater Electron 30, 20892–20898 (2019). https://doi.org/10.1007/s10854-019-02458-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02458-8

Navigation