Skip to main content

Advertisement

Log in

Novel Synthesis and Characterization of Flexible MnO2/CNT Composites Co-deposited on Graphite Paper as Supercapacitor Electrodes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Although MnO2 possesses many advantages, such as a high theoretical specific capacity, resource abundance, easy synthesis and environmental friendliness, its poor electrical conductivity and low utilization seriously hinder its large-scale application as an electrode in supercapacitors. A MnO2 and carbon nanotube (CNT) composite is co-deposited on flexible expanded graphite paper (EGP) by a facile method of composite brush plating. The three-dimensional conductive net of CNT in the composite greatly improves the supercapacitve and mechanical properties of MnO2 electrode. The paper mainly studied (i) the choice of composite brush plating voltage and (ii) the effect of the concentration of active substance CNTs deposited on the performance of supercapacitor. When the current density is 20 A g–1, the mass specific capacitance of the flexible CNT@MnO2/EGP electrode with an operation potential of 10 V in an electrolyte of 1.5 g L–1 CNTs dropped is 146 F g–1. The CNT@MnO2/EGP/active carbon (AC)/carbon fibre cloth (CFC) flexible aqueous asymmetric supercapacitor (ASC) exhibits an energy density of 36.3 Wh kg–1 at a power density of 126.2 W kg–1 and high cycling stability with 91% capacitance retention after 4000 cycles. This study paves the way to provide a simple and novel technique for the mass production of flexible MnO2 supercapacitor electrodes.

Graphic Abstract

The composite brush electroplating technology is successfully developed for fabricating flexible carbon nanotube@MnO2 composite co-deposited on expanded graphite paper, which displays excellent capacitive performance and cycling stability in an aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Park, Y. Jang, J.W. Park, H. Kim, and S.J. Kim, Quasi-solid-state highly stretchable circular knitted MnO2@CNT supercapacitor. RSC Adv. 10, 14007 (2020).

    Article  CAS  Google Scholar 

  2. J. Liang, B. Tian, S. Li, C. Jiang, and W. Wu, All-printed MnHCF-MnOx-based high-performance flexible supercapacitors. Adv. Energy Mater. 10, 1 (2020).

    Article  Google Scholar 

  3. J. Park, D.B. Ahn, J. Kim, E. Cha, B.S. Bae, S.Y. Lee, and J.U. Park, Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations. Sci. Adv. 5, 1 (2019).

    Article  Google Scholar 

  4. Y. Huang, J. Liu, Q. Huang, Z. Zheng, P. Hiralal, F. Zheng, D. Ozgit, S. Su, S. Chen, P.H. Tan, S. Zhang, and H. Zhou, Flexible high energy density zinc-ion batteries enabled by binder-free MnO2/reduced graphene oxide electrode. Npj Flex. Electron. 2, 1 (2018).

    Article  CAS  Google Scholar 

  5. P. Sundriyal and S. Bhattacharya, Textile-based supercapacitors for flexible and wearable electronic applications. Sci. Rep. 10, 1 (2020).

    Article  CAS  Google Scholar 

  6. J. Zhao, H. Lu, Y. Zhang, S. Yu, O.I. Malyi, X. Zhao, L. Wang, H. Wang, J. Peng, X. Li, Y. Zhang, S. Chen, H. Pan, G. Xing, C. Lu, Y. Tang, and X. Chen, Direct coherent multi-ink printing of fabric supercapacitors. Sci. Adv. 7, 1 (2021).

    Google Scholar 

  7. Z.H. Huang, Y. Song, D.Y. Feng, Z. Sun, X. Sun, and X.X. Liu, High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12, 3557 (2018).

    Article  CAS  Google Scholar 

  8. T. Wang, Q. Le, J. Zhang, Y. Zhang, and W. Li, Carbon cloth@T-Nb2O5@MnO2: a rational exploration of manganese oxide for high performance supercapacitor. Electrochim. Acta 253, 311 (2017).

    Article  CAS  Google Scholar 

  9. Y. Wang, C. Shi, Y. Chen, D. Li, G. Wu, C. Wang, L. Guo, and J. Ma, Self-supported nickel cobalt carbonate hydroxide nanowires encapsulated cathodically expanded graphite paper for supercapacitor electrodes. Electrochim. Acta 363, 137236 (2020).

    Article  CAS  Google Scholar 

  10. Y. Liu, S. Li, C. Wang, L. Guo, and Y. Wang, Accordion-like bimetal-organic framework anchoring on the partially-exfoliated graphite paper for high-performance supercapacitors. Appl. Surf. Sci. 528, 146954 (2020).

    Article  CAS  Google Scholar 

  11. J.A. Argüello, J.M. Rojo, and R. Moreno, Electrophoretic deposition of manganese oxide and graphene nanoplatelets on graphite paper for the manufacture of supercapacitor electrodes. Electrochim. Acta 294, 102 (2019).

    Article  CAS  Google Scholar 

  12. Z. Wang, X. Yan, F. Wang, T. Xiong, M.S. Balogun, H. Zhou, and J. Deng, Reduced graphene oxide thin layer induced lattice distortion in high crystalline MnO2 nanowires for high-performance sodium- and potassium-ion batteries and capacitors. Carbon N. Y. 174, 556 (2021).

    Article  CAS  Google Scholar 

  13. P. Gao, P. Metz, T. Hey, Y. Gong, D. Liu, D.D. Edwards, J.Y. Howe, R. Huang, and S.T. Misture, The critical role of point defects in improving the specific capacitance of Î-MnO2 nanosheets. Nat. Commun. 8, 1 (2017).

    Article  CAS  Google Scholar 

  14. W. Dang, C. Dong, Z. Zhang, G. Chen, Y. Wang, and H. Guan, Self-grown MnO2 nanosheets on carbon fiber paper as high-performance supercapacitors electrodes. Electrochim. Acta 217, 16 (2016).

    Article  CAS  Google Scholar 

  15. R. Poonguzhali, N. Shanmugam, R. Gobi, A. Senthilkumar, R. Shanmugam, and K. Sathishkumar, Influence of Zn doping on the electrochemical capacitor behavior of MnO2 nanocrystals. RSC Adv. 5, 45407 (2015).

    Article  CAS  Google Scholar 

  16. Q.Z. Zhang, D. Zhang, Z.C. Miao, X.L. Zhang, and S.L. Chou, Research progress in MnO2–carbon based supercapacitor electrode materials. Small 14, 1 (2018).

    Google Scholar 

  17. Z. Yu, B. Duong, D. Abbitt, and J. Thomas, Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv. Mater. 25, 3302 (2013).

    Article  CAS  Google Scholar 

  18. Y. Kim, S.C. Woo, C.S. Lee, J.S. Park, H. Seo, J.H. Kim, and J.H. Song, Electrochemical investigation on high-rate properties of graphene nanoplatelet-carbon nanotube hybrids for Li-ion capacitors. J. Electroanal. Chem. 863, 114060 (2020).

    Article  CAS  Google Scholar 

  19. Y. Zhang, Y. Liu, Z. Sun, J. Fu, S. Cheng, P. Cui, J. Zhou, Z. Zhang, X. Pan, W. Han, and E. Xie, Versatile electrochemical activation strategy for high-performance supercapacitor in a model of MnO2. J. Mater. Chem. A 7, 21290 (2019).

    Article  CAS  Google Scholar 

  20. B. Zhou, Y. Sui, J. Qi, Y. He, Q. Meng, F. Wei, Y. Ren, and X. Zhang, Synthesis of ultrathin MnO2 nanosheets/bagasse derived porous carbon composite for supercapacitor with high performance. J. Electron. Mater. 48, 3026 (2019).

    Article  CAS  Google Scholar 

  21. T. Hao, W. Wang, and D. Yu, A flexible cotton-based supercapacitor electrode with high stability prepared by multiwalled CNTs/PANI. J. Electron. Mater. 47, 4108 (2018).

    Article  CAS  Google Scholar 

  22. J.V.S. Moreira, P.W. May, E.J. Corat, A.C. Peterlevitz, R.A. Pinheiro, and H. Zanin, Diamond and carbon nanotube composites for supercapacitor devices. J. Electron. Mater. 46, 929 (2017).

    Article  CAS  Google Scholar 

  23. M. Mandal, S. Subudhi, I. Alam, B. Subramanyam, S. Patra, S. Das, J. Raiguru, A. Mahapatra, and P. Mahanandia, Simple and cost-effective synthesis of activated carbon anchored by functionalized multiwalled carbon nanotubes for high-performance supercapacitor electrodes with high energy density and power density. J. Electron. Mater. 50, 2879 (2021).

    Article  CAS  Google Scholar 

  24. J. Wang, X. Guo, R. Cui, H. Huang, B. Liu, Y. Li, D. Wang, D. Zhao, J. Dong, S. Li, and B. Sun, MnO2/porous carbon nanotube/MnO2 nanocomposites for high-performance supercapacitor. ACS Appl. Nano Mater. 3, 11152 (2020).

    Article  CAS  Google Scholar 

  25. F. Xiao, and Y. Xu, Electrochemical co-deposition and characterization of MnO2/SWNT composite for supercapacitor application. J. Mater. Sci. Mater. Electron. 24, 1913 (2013).

    Article  CAS  Google Scholar 

  26. T.H. Lee, D.T. Pham, R. Sahoo, J. Seok, T.H.T. Luu, and Y.H. Lee, High energy density and enhanced stability of asymmetric supercapacitors with mesoporous MnO2@CNT and nanodot MoO3@CNT free-standing films. Energy Storage Mater. 12, 223 (2018).

    Article  Google Scholar 

  27. K. Wu, Z. Ye, Y. Ding, Z. Zhu, X. Peng, D. Li, and G. Ma, Facile co-deposition of the carbon nanotube@MnO2 heterostructure for high-performance flexible supercapacitors. J. Power Sources 477, 229031 (2020).

    Article  CAS  Google Scholar 

  28. Z. Ye, T. Li, G. Ma, X. Peng, and J. Zhao, Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors. J. Power Sources 351, 51 (2017).

    Article  CAS  Google Scholar 

  29. P. Behera, S.K. Rajagopalan, S. Brahimi, C.A. Venturella, S.P. Gaydos, R.J. Straw, and S. Yue, Effect of brush plating process variables on the microstructures of Cd and ZnNi coatings and hydrogen embrittlement. Surf. Coatings Technol. 417, 127181 (2021).

    Article  CAS  Google Scholar 

  30. Y. Wei, L. Hongtao, and Z. Wei, Preparation of anti-corrosion superhydrophobic coatings by an Fe-based micro/nano composite electro-brush plating and blackening process. RSC Adv. 5, 103000 (2015).

    Article  CAS  Google Scholar 

  31. H. Liu, X. Wang, and H. Ji, Fabrication of lotus-leaf-like superhydrophobic surfaces via Ni-based nano-composite electro-brush plating. Appl. Surf. Sci. 288, 341 (2014).

    Article  CAS  Google Scholar 

  32. J. Tang, Y. Zuo, Y. Tang, and J. Xiong, The preparation of corrosion resistant palladium films on 316L stainless steel by brush plating. Surf. Coatings Technol. 204, 1637 (2010).

    Article  CAS  Google Scholar 

  33. X. Qi, Y. Wang, C. Wang, and R. Zhang, Microstructure and performance of nano-WC particle-strengthened Ni coatings by electro-brush plating. J. Mater. Eng. Perform. 27, 6069 (2018).

    Article  CAS  Google Scholar 

  34. J. Li, M. Yin, C. Guo, H. Zhang, T. Li, H. Wang, Y. Wei, L. Hou, and C. Jia, Belt-like MnO2 cathode to enable high energy density and ultra-stable aqueous asymmetric supercapacitor. Surf. Coatings Technol. 359, 175 (2019).

    Article  CAS  Google Scholar 

  35. D. Zhang, J. Wang, Q. Wang, S. Huang, H. Feng, and H. Luo, Nitrogen self-doped porous carbon material derived from metal-organic framework for high-performance super-capacitors. J. Energy Storage 25, 100904 (2019).

    Article  Google Scholar 

  36. Q. Gou, S. Zhao, J. Wang, M. Li, and J. Xue, Recent advances on boosting the cell voltage of aqueous supercapacitors. Nano-Micro Lett. 12, 1 (2020).

    Article  CAS  Google Scholar 

  37. Y. Wang, Y. Liu, H. Wang, W. Liu, Y. Li, J. Zhang, H. Hou, and J. Yang, Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl. Energy Mater. 2, 2063 (2019).

    Article  CAS  Google Scholar 

  38. O. Sadak, W. Wang, J. Guan, A.K. Sundramoorthy, and S. Gunasekaran, MnO2 nanoflowers deposited on graphene paper as electrode materials for supercapacitors. ACS Appl. Nano Mater. 2, 4386 (2019).

    Article  CAS  Google Scholar 

  39. V. Sannasi, M. Maheswari, K. Ramachandran, and S. Karuppuchamy, Microwave synthesis of Sn-doped NiO/CNT composites: The effect of Sn incorporation on their supercapacitive properties. J. Electron. Mater. 50, 6102 (2021).

    Article  CAS  Google Scholar 

  40. R. Teimuri-Mofrad, R. Hadi, H. Abbasi, and R. Fadakar Bajeh Baj, Synthesis, characterization and electrochemical study of carbon nanotube/chitosan-ferrocene nanocomposite electrode as supercapacitor material. J. Electronic Mater. 48, 4573–4581 (2019).

    Article  CAS  Google Scholar 

  41. L. Cuéllar-Herrera, E. Arce-Estrada, A. Romero-Serrano, J. Ortiz-Landeros, R. Cabrera-Sierra, C. Tirado-López, A. Hernández-Ramírez, and J. López-Rodríguez, Microwave-assisted synthesis and characterization of γ-MnO2 for high-performance supercapacitors. J. Electron. Mater. 50, 5577 (2021).

    Article  CAS  Google Scholar 

  42. S. Park, H.W. Shim, C.W. Lee, H.J. Song, I.J. Park, J.C. Kim, K.S. Hong, and D.W. Kim, Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Res. 8, 990 (2015).

    Article  CAS  Google Scholar 

  43. S. Xi, Y. Zhu, Y. Yang, and Y. Liu, Direct synthesis of MnO2 nanorods on carbon cloth as flexible supercapacitor electrode. J. Nanomater. 2017, 1 (2017).

    Article  CAS  Google Scholar 

  44. A. Yuan, X. Wang, Y. Wang, and J. Hu, Comparison of nano-MnO2 derived from different manganese sources and influence of active material weight ratio on performance of nano-MnO2/activated carbon supercapacitor. Energy Convers. Manag. 51, 2588 (2010).

    Article  CAS  Google Scholar 

  45. L. Xu, M. Jia, Y. Li, X. Jin, and F. Zhang, High-performance MnO2-deposited graphene/activated carbon film electrodes for flexible solid-state supercapacitor. Sci. Rep. 7, 1 (2017).

    CAS  Google Scholar 

  46. S. Chou, F. Cheng, and J. Chen, Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films. J. Power Sources 162, 727 (2006).

    Article  CAS  Google Scholar 

  47. I. Ryu, G. Kim, H. Yoon, S.J. Ahn, and S. Yim, Hierarchically nanostructured MnO2 electrodes for pseudocapacitor application. RSC Adv. 6, 102814 (2016).

    Article  CAS  Google Scholar 

  48. W. Guo, C. Yu, S. Li, Z. Wang, J. Yu, H. Huang, and J. Qiu, Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives. Nano Energy 57, 459 (2019).

    Article  CAS  Google Scholar 

  49. Z. Fan, J. Chen, B. Zhang, B. Liu, X. Zhong, and Y. Kuang, High dispersion of γ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors. Diam. Relat. Mater. 17, 1943 (2008).

    Article  CAS  Google Scholar 

  50. Y. Zhou, X. Cheng, F. Huang, Z. Sha, Z. Han, J. Chen, W. Yang, Y. Yu, J. Zhang, S. Peng, S. Wu, A. Rider, L. Dai, and C.H. Wang, Hierarchically structured electrodes for moldable supercapacitors by synergistically hybridizing vertical graphene nanosheets and MnO2. Carbon N. Y. 172, 272 (2021).

    Article  CAS  Google Scholar 

  51. D. Gueon and J.H. Moon, MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors. ACS Sustain. Chem. Eng. 5, 2445 (2017).

    Article  CAS  Google Scholar 

  52. M. Zhang, Y. Chen, D. Yang, and J. Li, High performance MnO2 supercapacitor material prepared by modified electrodeposition method with different electrodeposition voltages. J. Energy Storage 29, 101363 (2020).

    Article  Google Scholar 

  53. Y. Liu, Y. Zhang, Z. Sun, S. Cheng, P. Cui, Y. Wu, J. Zhang, J. Fu, and E. Xie, New insight into the mechanism of multivalent ion hybrid supercapacitor: From the effect of potential window viewpoint. Small 16, 2003403 (2020).

    Article  CAS  Google Scholar 

  54. T. Qin, B. Liu, Y. Wen, Z. Wang, X. Jiang, Z. Wan, S. Peng, G. Cao, and D. He, Freestanding flexible graphene foams@polypyrrole@MnO2 electrodes for high-performance supercapacitors. J. Mater. Chem. A 4, 9196 (2016).

    Article  CAS  Google Scholar 

  55. D. Briggs, and N. Fairley, Valence-band x-ray photoelectron spectroscopic studies of manganese and its oxides interpreted by cluster and band structure calculations. Surf. Interface Anal. 33, 274 (2002).

    Article  CAS  Google Scholar 

  56. Y. Fu, X. Gao, D. Zha, J. Zhu, X. Ouyang, and X. Wang, Yolk-shell-structured MnO2 microspheres with oxygen vacancies for high-performance supercapacitors. J. Mater. Chem. A 6, 1601 (2018).

    Article  CAS  Google Scholar 

  57. S.B. Singh, T.I. Singh, N.H. Kim, and J.H. Lee, A core-shell MnO2@Au nanofiber network as a high-performance flexible transparent supercapacitor electrode. J. Mater. Chem. A 7, 10672 (2019).

    Article  CAS  Google Scholar 

  58. C. Rogier, G. Pognon, P. Bondavalli, C. Galindo, G.T.M. Nguyen, C. Vancaeyzeele, and P.H. Aubert, Electrodeposition of MnO2 on spray-coated nanostructured carbon framework as high performance material for energy storage. Surf. Coatings Technol. 384, 125310 (2020).

    Article  CAS  Google Scholar 

  59. R. Aswathy, M. Ulaganathan, and P. Ragupathy, Mn3O4 nanoparticles grown on surface activated graphite paper for aqueous asymmetric supercapacitors. J. Alloys Compd. 767, 141 (2018).

    Article  CAS  Google Scholar 

  60. P. Wu, S. Cheng, L. Yang, Z. Lin, X. Gui, X. Ou, J. Zhou, M. Yao, M. Wang, Y. Zhu, and M. Liu, Synthesis and characterization of self-standing and highly flexible δ-MnO2@CNTs/CNTs composite films for direct use of supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 23721 (2016).

    Article  CAS  Google Scholar 

  61. P. Wu, S. Cheng, M. Yao, L. Yang, Y. Zhu, P. Liu, O. Xing, J. Zhou, M. Wang, H. Luo, M. Liu, and A. Low-Cost, Self-standing NiCo2O4@CNT/CNT multilayer electrode for flexible asymmetric solid-state supercapacitors. Adv. Funct. Mater. 27, 1 (2017).

    Article  Google Scholar 

  62. Y. Liu, X. Zhou, R. Liu, X. Li, Y. Bai, and G. Yuan, Preparation of three-dimensional compressible MnO2@carbon nanotube sponges with enhanced supercapacitor performance. New J. Chem. 41, 14906 (2017).

    Article  CAS  Google Scholar 

  63. X. Ou, Q. Li, D. Xu, J. Guo, and F. Yan, In situ growth of MnO2 nanosheets on N-doped carbon nanotubes derived from polypyrrole tubes for supercapacitors. Chem. An Asian J. 13, 545 (2018).

    Article  CAS  Google Scholar 

  64. L. Lyu, K.D. Seong, J.M. Kim, W. Zhang, X. Jin, D.K. Kim, Y. Jeon, J. Kang, and Y. Piao, CNT/high mass loading MnO2/graphene-grafted carbon cloth electrodes for high-energy asymmetric supercapacitors. Nano-micro lett. 11, 1–2 (2019).

    Article  CAS  Google Scholar 

  65. G. Zhang, H. Yao, F. Zhang, Z. Gao, Q. Li, Y. Yang, and X. Lu, A high over-potential binder-free electrode constructed of prussian blue and MnO2 for high performance aqueous supercapacitors. Nano Res. 12, 1061 (2019).

    Article  CAS  Google Scholar 

  66. A. Mohammadi, N. Arsalani, A.G. Tabrizi, S.E. Moosavifard, Z. Naqshbandi, and L.S. Ghadimi, Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors. Chem. Eng. J. 334, 66 (2018).

    Article  CAS  Google Scholar 

  67. D. Zhao, X. Wu, and C. Guo, Hybrid MnO2@NiCo2O4 nanosheets for high performance asymmetric supercapacitors. Inorg. Chem. Front. 5, 1378 (2018).

    Article  CAS  Google Scholar 

  68. H. Zhou, Y. Lu, F. Wu, L. Fang, H.J. Luo, Y.X. Zhang, and M. Zhou, MnO2 nanorods/MXene/CC composite electrode for flexible supercapacitors with enhanced electrochemical performance. J. Alloys Compd. 802, 259 (2019).

    Article  CAS  Google Scholar 

  69. L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H.N. Alshareef, and Y. Cui, Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5, 8904 (2011).

    Article  CAS  Google Scholar 

  70. Y. Guo, L. Li, L. Song, M. Wu, Y. Gao, J. Chen, C. Mao, J. Song, and H. Niu, Co2+ induced phase transformation from δ- To α-MnO2 and their hierarchical α-MnO2@ δ-MnO2 nanostructures for efficient asymmetric supercapacitors. J. Mater. Chem. A 7, 12661 (2019).

    Article  CAS  Google Scholar 

  71. M. Li, J. Yu, X. Wang, and Z. Yang, 3D porous MnO2@carbon nanosheet synthesized from rambutan peel for high-performing supercapacitor electrodes materials. Appl. Surf. Sci. 530, 147230 (2020).

    Article  CAS  Google Scholar 

  72. H. Zhang, L. Lin, B. Wu, and N. Hu, Vertical carbon skeleton introduced three-dimensional MnO2 nanostructured composite electrodes for high-performance asymmetric supercapacitors. J. Power Sources 476, 228527 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51862026), the Aeronautical Science Foundation of China (2017ZF56027), the Natural Science Foundation of Jiangxi Province (20192ACBL21048), the Key Research and Development Program of Jiangxi Province (20203BBE53069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguo Ye or Duosheng Li.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhu, Z., Ma, G. et al. Novel Synthesis and Characterization of Flexible MnO2/CNT Composites Co-deposited on Graphite Paper as Supercapacitor Electrodes. J. Electron. Mater. 51, 2982–2994 (2022). https://doi.org/10.1007/s11664-022-09575-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09575-x

Keywords

Navigation