Skip to main content
Log in

A Fast Responsive Ultraviolet Sensor from mSILAR-Processed Sn-ZnO

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Microwave-assisted successive ionic layer adsorption and reaction was employed to synthesize Sn-ZnO (tin-doped zinc oxide), and its sensitivity to ultraviolet radiation is compared with zinc oxide (ZnO). The sensing films were made by the dip-coated method on an indium titanium oxide glass substrate, and the sensing performance was monitored using the 300–700 nm wavelength of UV–Vis light. Excellent sensitivity and recovery were observed for the Sn-doped ZnO sensor device, especially at 380 nm wavelength of ultraviolet (UV) light (response and recovery time 2.26 s and 8.63 s, respectively, at 5 V bias voltage). The variation in photocurrent with respect to dark and light illumination atmosphere was well illustrated based on the Schottky and inter-particle network effects. Doping of Sn on ZnO nanoparticles varied the surface roughness and crystallite size as observed from scanning electron microscopic and x-ray diffraction studies. Here, we demonstrate a simple and economical fabrication technique for designing a high-performance UV light sensor. The developed device works at room temperature with high durability and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Monroy, F. Calle, J.L. Pau, E. Muñoz, F. Omnès, B. Beaumont, and P. Gibart, J. Cryst. Growth 230, 537 (2001).

    Article  Google Scholar 

  2. E. Monroy, F. Omnes, and F. Calle, Semicond. Sci. Technol. 18, R33 (2003).

    Article  Google Scholar 

  3. S.J. Young, L.W. Ji, S.J. Chang, and Y.K. Su, J. Cryst. Growth 293, 43 (2006).

    Article  Google Scholar 

  4. E. Munoz, E. Monroy, J.L. Pau, F. Calle, F. Omnes, and P. Gibart, J. Phys. Condens. Matter 13, 7115 (2001).

    Article  Google Scholar 

  5. T.M. Barnes, J. Leaf, S. Hand, C. Fry, and C.A. Wolden, J. Appl. Phys. 96, 7036 (2004).

    Article  Google Scholar 

  6. S. Goutham, D.S. Kumar, K.K. Sadasivuni, J.-J. Cabibihan, and K.V. Rao, J. Electron. Mater. 46, 2334 (2017).

    Article  Google Scholar 

  7. S. Goutham, S. Kaur, K.K. Sadasivuni, J.K. Bal, N. Jayarambabu, D.S. Kumar, and K.V. Rao, Mater. Sci. Semicond. Process. 57, 110 (2017).

    Article  Google Scholar 

  8. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K. Chidambaram, K.K. Sadasivuni, D. Ponnamma, and M.Al. AlMaadeed, Polym. Plast. Technol. Eng. 55, 1240 (2016).

    Article  Google Scholar 

  9. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, D. Ponnamma, and M. Al-Ali AlMaadeed, J. Mater. Sci. Mater. Electron. 28, 559 (2016).

    Article  Google Scholar 

  10. A. Hezam, K. Namratha, Q.A. Drmosh, B.N. Chandrashekar, K.K. Sadasivuni, Z.H. Yamani, C. Cheng, and K. Byrappa, Cryst.Commun. Eng. (2017). doi:10.1039/C7CE00609H.

    Google Scholar 

  11. S.P. Ghosh, K.C. Das, N. Tripathy, G. Bose, D.H. Kim, T.I. Lee, J.M. Myoung, and J.P. Kar, IOP Conf. Ser. Mater. Sci. Eng. 115, 012035 (2016).

    Article  Google Scholar 

  12. A.J. Gimenez, J.M. Yáñez-Limón, and J.M. Seminario, J. Phys. Chem. C 115, 282 (2011).

    Article  Google Scholar 

  13. C.-H. Lin, S.-J. Chang, W.-S. Chen, and T.-J. Hsueh, RSC Adv. 6, 11146 (2016).

    Article  Google Scholar 

  14. Z. Wang, R. Yu, X. Wang, W. Wu, and Z.L. Wang, Adv. Mater. 28, 6880 (2016).

    Article  Google Scholar 

  15. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158 (2002).

    Article  Google Scholar 

  16. Y. Li, V.F. Della, M. Simonnet, and I. Yamada, Nanotechnology 20, 045501 (2009).

    Article  Google Scholar 

  17. S. Dhara and P.K. Giri, Nanoscale Res. Lett. 6, 504 (2011).

    Article  Google Scholar 

  18. G. Chai, O. Lupan, L. Chow, and H. Heinrich, Sens. Actuators A 150, 184 (2009).

    Article  Google Scholar 

  19. L. Chow, O. Lupan, and G. Chai, Phys. Stat. Sol. B 247, 1628 (2010).

    Article  Google Scholar 

  20. Th Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, Appl. Phys. Lett. 84, 5359 (2004).

    Article  Google Scholar 

  21. J. Liu, W. Wu, S. Bai, Y. Qin, and A.C.S. Appl, Mater. Interfaces 3, 4197 (2011).

    Article  Google Scholar 

  22. P.X. Gao, C.S. Lao, W.L. Hughes, and Z.L. Wang, Chem. Phys. Lett. 408, 174 (2005).

    Article  Google Scholar 

  23. R.D. McKeag, S.S.M. Chan, and R.B. Jackman, Appl. Phys. Lett. 67, 2117 (1995).

    Article  Google Scholar 

  24. Y.W. Heo, B.S. Kang, L.C. Tien, D.P. Norton, F. Ren, J.R.L. Roche, and S.J. Pearton, Appl. Phys. A 80, 497 (2005).

    Article  Google Scholar 

  25. T.T. Pham, K.Y. Lee, J.H. Lee, K.H. Kim, K.S. Shin, M.K. Gupta, B. Kumar, and S.W. Kim, Energy Environ. Sci. 6, 841 (2013).

    Article  Google Scholar 

  26. J.L. Hou, S.J. Chang, and S.P. Chang, Int. J. Electrochem. Soc. 8, 5650 (2013).

    Google Scholar 

  27. M.R. Alenezi, S.J. Henley, and S.R.P. Silva, Sci. Rep. 5, 8516 (2015).

    Article  Google Scholar 

  28. S.I. Inamdar, V.V. Ganbavle, and K.Y. Rajpure, Superlattices Microstruct. 76, 253 (2014).

    Article  Google Scholar 

  29. T. Ateş, C. Tatar, and F. Yakuphanoglu, Sens. Actuators 190, 153 (2013).

    Article  Google Scholar 

  30. D. Thomas, S. Augustine, K.K. Sadasivuni, D. Ponnamma, J.J. Cabibihan, A.Y. Al Haddad, and K.A. Vijayalakshmi, J. Electron. Mater. 45, 1 (2016).

    Article  Google Scholar 

  31. D. Thomas, S.C. Vattappalam, S. Mathew, and S. Augustine, Adv. Chem. 2014, 1 (2014).

    Article  Google Scholar 

  32. A.A. Hendi, R.H. Alorainy, and F. Yakuphanoglu, J. Sol–Gel Sci. Technol. 72, 559 (2014).

    Article  Google Scholar 

  33. A. Bedia, F.Z. Bedia, M. Aillerie, N. Maloufi, S. Ould Saad Hamady, O. Perroud, and B. Benyoucef, Opt. Mater. 36, 1123 (2014).

    Article  Google Scholar 

  34. F. Yakuphanoglu, S. Ilican, M. Caglar, and Y. Caglar, Superlattices Microstruct. 47, 732 (2010).

    Article  Google Scholar 

  35. D. Ponnamma, K.K. Sadasivuni, M. Strankowski, Q. Guo, and S. Thomas, Soft Matter 9, 10343 (2013).

    Article  Google Scholar 

  36. K.K. Sadasivuni, A. Kafy, L. Zhai, H.U. Ko, S. Mun, and J. Kim, Small 11, 1002 (2015).

    Article  Google Scholar 

  37. K.K. Sadasivuni, A. Kafy, H.C. Kim, H.-U. Ko, S. Mun, and J. Kim, Synth. Met. 206, 154 (2015).

    Article  Google Scholar 

  38. K.K. Sadasivuni, D. Ponnamma, H.-U. Ko, H.C. Kim, L. Zhai, and J. Kim, Sens. Actuators B Chem. 233, 633 (2016).

    Article  Google Scholar 

  39. D. Ponnamma, K.K. Sadasivuni, S. Thomas, I. Krupa, and M.A.A. AlMa’adeed, Rubber Chem. Technol. 89, 306 (2016).

    Article  Google Scholar 

Download references

Acknowledgement

This publication was made possible by the support of an NPRP grant from the Qatar National Research Fund (NPRP 7 - 673 - 2 - 251). The statements made here are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepu Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, D., Vijayalakshmi, K.A., Sadasivuni, K.K. et al. A Fast Responsive Ultraviolet Sensor from mSILAR-Processed Sn-ZnO. J. Electron. Mater. 46, 6480–6487 (2017). https://doi.org/10.1007/s11664-017-5680-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5680-9

Keywords

Navigation