Skip to main content
Log in

Microtron Irradiation Induced Tuning of Band Gap and Photoresponse of Al-ZnO Thin Films Synthesized by mSILAR

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Al-doped polycrystalline nano ZnO (Al-ZnO) thin films with different doping concentrations were successfully prepared by the microwave-assisted successive ionic layer adsorption and reaction (mSILAR) technique. The structural analysis along with the orientation of the prepared films was examined by powder x-ray diffraction (PXRD) patterns. The deposited film is polycrystalline and the (002) orientation enhanced upon doping. Additional investigations were carried out to study the effect of electron beam irradiation (e-irradiation) on the band gap and photoconductivity of both irradiated and unirradiated samples. Both the Al doping and e-irradiation led to the enhancement of the photoconductivity of prepared materials. This property enables us to tune the properties of materials for various applications by controlling dopant concentrations and e-irradiation. The dependence of photocurrent on e-irradiation of Al-ZnO thin films was not reported previously. Therefore, Al-doped polycrystalline nano-ZnO thin film is a promising material for band gap engineering and for the development of solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Benyagoub, F. Couvreur, S. Bouffard, F. Levesque, C. Dufour, and E. Paumier, Nucl. Instrum. Methods Phys. Res. B 175, 417 (2001).

    Article  Google Scholar 

  2. C. Gilbert-Mougel, F. Couvreur, J.M. Costantini, S. Bouffard, F. Levesque, S. Hemon, E. Paumier, and C. Dufour, J. Nucl. Mater. 295, 121 (2001).

    Article  Google Scholar 

  3. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K. Chidambaram, K.K. Sadasivuni, D. Ponnamma, and M.A. Al-Maadeed, Polym. Plast. Technol. (2016). doi:10.1080/03602559.2015.1132451.

    Google Scholar 

  4. Y.J. Jo, C.H. Hong, and J.S. Kwak, Curr. Appl. Phys. 11, S143 (2011).

    Article  Google Scholar 

  5. K. Siraj, K. Javaid, J.D. Pedarnig, M.A. Bodea, and S. Naseem, J. Alloys Compd. 563, 280 (2013).

    Article  Google Scholar 

  6. E. Yun, J.W. Jung, B.C. Lee, and M. Jung, Surf. Coat. Technol. 205, 5130 (2011).

    Article  Google Scholar 

  7. M. Ristov, G. Sinadinovski, and M. Mitreski, J. Thin Solid Films 167, 12 (1988).

    Article  Google Scholar 

  8. Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, Superlattices Microstruct. 49, 644 (2011).

    Article  Google Scholar 

  9. K.C. Park, D.Y. Ma, and K.H. Kim, Thin Solid Films 305, 201 (1997).

    Article  Google Scholar 

  10. P. Raghu, C.S. Naveen, K. Mrudula, S. Ganesh, J. Shailaja, and H.M. Mahesh, J. Nano-Electron. Phys. 6, 04007 (2014).

    Google Scholar 

  11. P.M. Ratheesh Kumar, C. Sudha Kartha, K.P. Vijayakumar, F. Singh, D.K. Avasthi, T. Abe, Y. Kashiwaba, G.S. Okram, M. Kumar, and S. Kumar, J. Appl. Phys. 97, 013509 (2005).

    Article  Google Scholar 

  12. H. Bender and W.D. Chen, Surf. Interface Anal. 15, 38 (1990).

    Article  Google Scholar 

  13. N. Baydogan, O. Ozdemir, and H. Cimenoglu, Radiat. Phys. Chem. 89, 20 (2013).

    Article  Google Scholar 

  14. S.M. Al-Sofiany, H.E. Hassan, A.H. Ashour, and M.M. Abd, El-Raheem. Int. J. Electrochem. Sci. 9, 3209 (2014).

    Google Scholar 

  15. Y. Kumar, M.H. Zaldivar, S.F. Olive-Méndez, F. Singh, X. Mathew, and V. Agarwal, Nanoscale Res. Lett. 7, 366 (2012).

    Article  Google Scholar 

  16. V. Kumar, R.G. Singh, L.P. Purohit, and F. Singh, Adv. Mater. Lett. 4, 423 (2013).

    Google Scholar 

  17. A.M. Soleimanpour, Y. Hou, and A.H. Jayatissa, Appl. Surf. Sci. 257, 5398 (2011).

    Article  Google Scholar 

  18. R. Laura, J. Covington, and C. Moore, Thin Solid Films 540, 106 (2013).

    Article  Google Scholar 

  19. S. Dhara and P.K. Giri, Thin Solid Films 520, 5000 (2012).

    Article  Google Scholar 

  20. R. Shankar, R.K. Srivastava, and S.G. Prakash, Electron. Mater. Lett. 9, 555 (2013).

    Article  Google Scholar 

  21. D. Ponnamma, K.K. Sadasivuni, C. Wan, S. Thomas, and M.A. AlMa’adeed, Flexible and Stretchable Electronic Composites (Switzerland: Springer, 2016), p. 199.

    Book  Google Scholar 

  22. E.J. Yun, J.W. Jung, K.N. Ko, J. Hwang, B.C. Lee, and M.H. Jung, Thin Solid Films 518, 6236 (2010). http://www.sciencedirect.com/science/article/pii/S00406090 10005171. Accessed 1 Sept 2010.

  23. M.H. Mamat, M.Z. Sahdan, Z. Khusaimi, A. Zain Ahmed, S. Abdullah, and M. Rusop, Opt. Mater. 32, 696 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepu Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, D., Augustine, S., Sadasivuni, .K. et al. Microtron Irradiation Induced Tuning of Band Gap and Photoresponse of Al-ZnO Thin Films Synthesized by mSILAR. J. Electron. Mater. 45, 4847–4853 (2016). https://doi.org/10.1007/s11664-016-4673-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4673-4

Keywords

Navigation