Skip to main content
Log in

Humidity sensing characteristics of Sn doped Zinc oxide based quartz crystal microbalance sensors

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The electrical, optical and humidity sensor properties of nanostructured ZnO samples were investigated. The structural properties of Sn doped ZnO samples were characterized by X-ray diffraction and atomic force microscopy. It was found that the all samples have a hexagonal crystal structure. The electrical conductivity of the samples indicates that undoped and Sn doped ZnO samples exhibit the semiconducting behavior. The optical absorption method was used to determine the optical band gaps of the samples. The optical band gap and activation energy values of the ZnO samples were changed with Sn doping. The ZnO based on quartz crystal microbalance humidity sensors were prepared and sensing properties of the sensors were changed with Sn doping. The response time required to reach 70 % is about 13–16 s, while the recovery time from 70 to 30 % RH is about 13–15 s. The fast response of the sensors is due to easy diffusion of water molecules between ZnO nanopowders. The prepared sensors have a high reproducibility and sensitivity for humidity sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yamazoe N, Shimizu Y (1986) Sens Actuators 10:379–398

    Article  Google Scholar 

  2. Dessler AE, Sherwood SC (2009) A matter of humidity. Science 323:1020–1021

    Article  Google Scholar 

  3. Chu J, Peng XY, Feng P, Sheng Y, Zhang JT (2013) Sens Actuators B 178:508–513

    Article  Google Scholar 

  4. Huang H, Zhou J, Chen S, Zeng L, Huang Y (2004) Sens Actuators B 101:316–321

    Article  Google Scholar 

  5. Zhang J, Hu JQ, Zhu FR, Gong H, O’Shea SJ (2002) Sens. Actuators B Chem 87:159–167

    Article  Google Scholar 

  6. Teresa M, Sergio P, Nogueira T, Oliveira JP (2000) Sens Actuators B 68:218

    Article  Google Scholar 

  7. Nanto H, Tsubakino S, Habara M, Kondo K, Morita T, Douguchi Y, Nakazumi H, Waite R (1996) Sens Actuators B 34:312

    Article  Google Scholar 

  8. Henkel K, Opera A, Paloumpa I, Appel G, Schmeiber D, Kamieth P (2001) Sens Actuators B 76:124

    Article  Google Scholar 

  9. Nanto H, Dougami N, Mukai T, Habara M, Kusano E, Kinbara A, Ogawa T, Oyabu T (2000) Sens Actuators B 66:16

    Article  Google Scholar 

  10. Klingshirn C (2007) Phys Status Solidi B 9:3027–3073

    Article  Google Scholar 

  11. Erol A, Okur S, Comba B, Mermer O, Arıkan MC (2010) Sens Actuators B 145:174–180

    Article  Google Scholar 

  12. Arnold MA, Avouris P, Pan ZW, Wang ZL (2003) J Phys Chem B 107:659–663

    Article  Google Scholar 

  13. Erol A, Okur S, Comba B, Mermer O, Arıkan C (2005) Sens Actuators B Chem 107:379

    Article  Google Scholar 

  14. Qi Q, Zhang T, Yu Q, Wang R, Zeng Y, Liu L, Yang H (2008) Sens Actuators B 133:638–643

    Article  Google Scholar 

  15. Zhang Y, Ke Yu, Ouyang S, Luo L, Hongmei H, Zhang Q, Zhu Z (2005) Phys B 368:94–99

    Article  Google Scholar 

  16. Wang X-H, Ding Y-F, Zhang J, Zhu Z-Q, You S-Z, Chen S-Q, Zhu J (2006) Sens Actuators B 115:421–427

    Article  Google Scholar 

  17. Ateş T, Tatar C, Yakuphanoglu F (2013) Sens Actuators 190:153

    Article  Google Scholar 

  18. Wu GS, Xie T, Yuan XY, Li Y, Yang L, Xiao YH, Zhang LD (2005) Solid State Commun 134:485–489

    Article  Google Scholar 

  19. Ilican S, Caglar M, Caglar Y (2010) Appl Surf Sci 256:7204–7210

    Article  Google Scholar 

  20. Zhou X, Zhang J, Jiang T, Wang X, Zhu Z (2007) Sens Actuators A Phys 135:209–214

    Article  Google Scholar 

  21. Neogi SK, Ghosh R, Paul GK, Bera SK, Bandyopadhyay S (2009) J Alloy Compd 487:269–273

    Article  Google Scholar 

  22. Srinivasan G, Kumar J (2008) J Cryst Growth 310:1841–1846

    Article  Google Scholar 

  23. Tauc J (1974) Amorphous and liquid semiconductors. Plenum Press, New York

    Book  Google Scholar 

  24. Aydın C, Abd El Sadek MS, Zheng K, Yahia IS, Yakuphanoglu F (2013) Opt Laser Technol 48:447–452

    Article  Google Scholar 

  25. Yakuphanoglu F (2010) J Alloy Compd 507:184–189

    Article  Google Scholar 

  26. Ilican S, Caglar Y, Caglar M, Yakuphanoglu F (2006) Physica E 35:131–138

    Article  Google Scholar 

  27. Yakuphanoglu F, Ilican S, Caglar M, Caglar Y (2010) Superlattice Microstruct 47:732–743

    Article  Google Scholar 

  28. Sun ZP, Liu L, Zhang L, Jia DZ (2006) Nanotechnology 17:2266–2270

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (363-258-D1435). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Hendi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendi, A.A., Alorainy, R.H. & Yakuphanoglu, F. Humidity sensing characteristics of Sn doped Zinc oxide based quartz crystal microbalance sensors. J Sol-Gel Sci Technol 72, 559–564 (2014). https://doi.org/10.1007/s10971-014-3473-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3473-7

Keywords

Navigation