Skip to main content
Log in

Experiments on In2S3:Sn Thin Films with up to 1% Tin Content

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tin-doped indium sulfide (In2S3:Sn) thin films with different Sn:In molar ratios (0% to 1% by mol in solution) have been deposited on glass substrates by a chemical spray pyrolysis method. The films were investigated by x-ray diffraction analysis, optical absorption, Raman, and photoluminescence spectroscopies, field-emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and atomic force microscopy. The structural properties revealed that the In2S3:Sn thin films had polycrystalline cubic structure with average crystallite size increasing from 16.3 nm to 25.5 nm. The surface morphology of the films was continuous and crack free. The average and root-mean-square roughness increased from 13.12 nm to 31.65 nm and from 16.14 nm to 39.39 nm, respectively, with increasing Sn:In molar ratio. Raman studies revealed the presence of vibration modes related to In2S3 phase, with no signature of secondary phases. The transmission coefficient was about 65% to 70% in the visible region and 70% to 90% in the near-infrared region. The optical bandgap values for allowed direct transitions in In2S3:Sn were found to lie in the range from 2.68 eV to 2.80 eV. The refractive index of the In2S3:Sn thin films decreased from 2.45 to 2.37 while the k values lay in the range from 0.02 to 0.25 for all wavelengths. Defect-related photoluminescence properties are also discussed. These In2S3:Sn films are promising candidates for use in optoelectronic and photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. El Sbazly, D.A. Elhady, H.S. Metwally, and M.A.M. Seyam, J. Phys. Condens. Matter 10, 5943 (1998).

    Article  Google Scholar 

  2. M. Kilani, B. Yahmadi, N.K. Turki, and M. Castagné, J. Mater. Sci. 46, 6293 (2011).

    Article  Google Scholar 

  3. K. Hara, K. Sayama, and H. Arakawa, Sol. Energy Mater. Sol. Cells 62, 441 (2000).

    Article  Google Scholar 

  4. R. Nomura, S. Inazawa, K. Kanaya, and H. Matsuda, Appl. Organomet. Chem. 3, 195 (1989).

    Article  Google Scholar 

  5. N. Kamoun, S. Belgacem, M. Amlouk, R. Bennaceur, J. Bonnet, F. Touhari, M. Nouaoura, and L. Lassabatere, J. Appl. Phys. 89, 2766 (2001).

    Article  Google Scholar 

  6. S.H. Choe, T.H. Bang, N.O. Kim, H.G. Kim, C.I. Lee, M.S. Jin, S.K. Oh, and W.T. Kim, Semicond. Sci. Technol. 16, 98 (2001).

    Article  Google Scholar 

  7. E. Dalas and L. Kobotiatis, J. Mater. Sci. 28, 6595 (1993).

    Article  Google Scholar 

  8. S. Yu, L. Shu, Y. Qian, Y. Xie, J. Yang, and L. Yang, Mater. Res. Bull. 33, 717 (1998).

    Article  Google Scholar 

  9. W. Chen, J.O. Bovin, A.G. Joly, S. Wang, F. Su, and G. Li, J. Phys. Chem. B 108, 11927 (2004).

    Article  Google Scholar 

  10. Y. He, D. Li, G. Xiao, W. Chen, Y. Chen, M. Sun, H. Huang, and X. Fu, J. Phys. Chem. C 113, 5254 (2009).

    Article  Google Scholar 

  11. X. Fu, X. Wang, Z. Chen, Z. Zhang, Z. Li, D.Y.C. Leung, L. Wu, and X. Fu, Appl. Catal. B 95, 393 (2010).

    Article  Google Scholar 

  12. N. Barreau, S. Marsillac, J.C. Bernede, and L. Assmann, J. Appl. Phys. 93, 5456 (2003).

    Article  Google Scholar 

  13. D. Braunger, D. Hariskos, T. Walter, and H.W. Schock, Sol. Energy Mater. Sol. Cells 40, 97 (1996).

    Article  Google Scholar 

  14. N. Bouguila, M. Kraini, I. Najeh, I. Halidou, E. Lacaze, H. Bouchriha, H. Bouzouita, and S. Alaya, J. Electron. Mater. 44, 4213 (2015).

    Article  Google Scholar 

  15. N. Bouguila, M. Kraini, A. Timoumi, I. Halidou, C. Vázquez-Vázquez, M.A. López-Quintela, and S. Alaya, J. Mater. Sci. Mater. Electron. 26, 7639 (2015).

    Article  Google Scholar 

  16. K. Otto, A. Katerski, A. Mere, O. Volobujeva, and M. Krunks, Thin Solid Films 519, 3055 (2011).

    Article  Google Scholar 

  17. N. Bouguila, I. Najeh, N. Ben Mansour, H. Bouzouita, and S. Alaya, J. Mater. Sci. Mater. Electron. 26, 6471 (2015).

    Article  Google Scholar 

  18. N. Bouguila, M. Kraini, I. Halidou, E. Lacaze, H. Bouchriha, and H. Bouzouita, J. Electron. Mater. 45, 829 (2016).

    Article  Google Scholar 

  19. N. Bouguila, A. Timoumi, and H. Bouzouita, Eur. Phys. J. Appl. Phys. 65, 20304 (2014).

    Article  Google Scholar 

  20. N. Bouguila, A. Timoumi, H. Bouzouita, E. Lacaze, H. Bouchriha, and B. Rezig, Eur. Phys. J. Appl. Phys. 63, 2030 (2013).

    Article  Google Scholar 

  21. M. Kraini, N. Bouguila, I. Halidou, A. Timoumi, and S. Alaya, Mater. Sci. Semicond. Process. 16, 1388 (2013).

    Article  Google Scholar 

  22. N. Barreau, Sol. Energy 83, 363 (2009).

    Article  Google Scholar 

  23. H. Spasevska, C.C. Kitts, C. Ancora, and G. Ruani, Int. J. Photoenergy 2012, 1 (2011).

    Article  Google Scholar 

  24. A. Akkari, C. Guasch, M. Castagne, and N.K. Turki, J. Mater. Sci. 46, 6285 (2011).

    Article  Google Scholar 

  25. A. Timoumi, H. Bouzouita, and B. Rezig, Thin Solid Films 519, 7615 (2011).

    Article  Google Scholar 

  26. S. Cingarapu, M.A. Ikenberry, D.B. Hamal, C.M. Sorensen, K. Hohn, and K.J. Klabunde, Langmuir 28, 3569 (2012).

    Article  Google Scholar 

  27. L.J. Liu, W.D. Xiang, J.S. Zhong, X.Y. Yang, X.J. Liang, H.T. Liu, and W. Cai, J. Alloys Compd. 493, 309 (2010).

    Article  Google Scholar 

  28. R.S. Becker, T. Zheng, J. Elton, and M. Saeki, Sol. Energ. Mater. 13, 97 (1986).

    Article  Google Scholar 

  29. L.L. Yan, Y.J. Ling, C.S. Ying, and L.P. Min, Chin. Phys. B 24, 078103 (2015).

    Article  Google Scholar 

  30. M. Kilani, C. Guasch, M. Castagne, and N.K. Turki, J. Mater. Sci. 47, 3198 (2012).

    Article  Google Scholar 

  31. T. Sall, M. Fahoume, B. Mari, and M. Mollar, 2014 International Renewable and Sustainable Energy Conference (IRSEC) (IEEE, 2014), pp. 667–671. doi:10.1109/IRSEC. 2014.7059889

  32. M.H.Z. Maha, M.M.B. Mohagheghi, and H.A. Juybari, Thin Solid Films 536, 57 (2013).

    Article  Google Scholar 

  33. M. Mathew, M. Gopinath, C.S. Kartha, K.P. Vijayakumar, Y. Kashiwaba, and T. Abe, Sol. Energy 84, 888 (2010).

    Article  Google Scholar 

  34. M. Kraini, N. Bouguila, I. Halidou, A. Moadhen, C. Vázquez-Vázquez, M.A. López-Quintela, and S. Alaya, J. Electron. Mater. 44, 2536 (2015).

    Article  Google Scholar 

  35. M. Kraini, N. Bouguila, J. El Ghoul, I. Halidou, S.A. Gomez-Lopera, C. Vázquez-Vázquez, M.A. López-Quintela, and S. Alaya, J. Mater. Sci. Mater. Electron. 26, 5774 (2015).

    Article  Google Scholar 

  36. D.R. Lide, CRC Handbook of Chemistry and Physics, 89th ed. (New York: CRC Press, Taylor & Francis Group, 2008), pp. 1923–1924.

    Google Scholar 

  37. B.D. Cullity, Elements of X-ray Diffraction (Reading, MA: Addison-Wesley, 1978).

    Google Scholar 

  38. A. Khorsand Zak, W.H. Abd Majid, M.E. Abrishami, and R. Yousefi, Solid State Sci. 13, 251 (2011).

    Article  Google Scholar 

  39. K. Ravichandran and P. Philominathan, Sol. Energy 82, 1062 (2008).

    Article  Google Scholar 

  40. V. Bilgin, S. Kose, F. Atay, and I. Akyuz, Mater. Chem. Phys. 94, 103 (2005).

    Article  Google Scholar 

  41. P. Roy and S.K. Srivastava, Thin Solid Films 496, 293 (2006).

    Article  Google Scholar 

  42. K. Ben Bacha, A. Timoumi, N. Bitri, and H. Bouzouita, Optik 126, 3020 (2015).

    Article  Google Scholar 

  43. G.B. Kamath, C.M. Joseph, and C.S. Menon, Mater. Lett. 57, 730 (2002).

    Article  Google Scholar 

  44. S.P. Nehra, S. Chander, A. Sharma, and M.S. Dhaka, Mater. Sci. Semicond. Process. 40, 26 (2015).

    Article  Google Scholar 

  45. M.H. Suhail, S.G. Kaleel, and F.M. Yasser, APJR 1, 80 (2014).

    Google Scholar 

  46. S. Rajeh, A. Mhamdi, K. Khirouni, M. Amlouk, and S. Guermazi, Opt. Laser Technol. 69, 113 (2015).

    Article  Google Scholar 

  47. F. Urbach, Phys. Rev. 92, 1324 (1953).

    Article  Google Scholar 

  48. S. Ilican, Y. Caglar, and M. Caglar, J. Optoelectron. Adv. Mater. 10, 2578 (2008).

    Google Scholar 

  49. S. Ilican, Y. Caglar, M. Caglar, M. Kundakci, and A. Ates, Int. J. Hydrogen Energy 12, 5201 (2009).

    Article  Google Scholar 

  50. T.S. Moss, Proc. Phys. Soc. B 67, 775 (1954).

    Article  Google Scholar 

  51. E. Burstein, Phys. Rev. 93, 632 (1954).

    Article  Google Scholar 

  52. C. Guillén, T. Garcia, J. Herrero, M.T. Gutiérrez, and F. Briones, Thin Solid Films 451, 112 (2004).

    Article  Google Scholar 

  53. P.J.L. Herve and L.K.J. Vandamme, J. Appl. Phys. 77, 5476 (1995).

    Article  Google Scholar 

  54. M.M. El-Nahass, B.A. Khalifa, H.S. Soliman, and M.A.M. Seyam, Thin Solid Films 515, 1796 (2006).

    Article  Google Scholar 

  55. A. Timoumi, H. Bouzouita, and B. Rezig, Aust. J. Basic Appl. Sci. 7, 448 (2013).

    Google Scholar 

  56. L.L. Yan, Y.J. Ling, C.S. Ying, and L.P. Min, Chin. Phys. B 24, 078103 (2015).

    Article  Google Scholar 

  57. Y. Xiong, Y. Xie, G. Du, X. Tian, and Y. Qian, J. Solid State Chem. 166, 336 (2002).

    Article  Google Scholar 

  58. C. Guillen and J. Herrero, Thin Solid Films 510, 260 (2006).

    Article  Google Scholar 

  59. H. Tao, H. Zang, G. Dong, J. Zeng, and X. Zhao, Optoelectron. Adv. Mater. Rapid Commun. 2, 356 (2008).

    Google Scholar 

  60. H. Tao, S. Mao, G. Dong, H. Xiao, and X. Zhao, Solid State Commun. 137, 408 (2006).

    Article  Google Scholar 

  61. R. Jayakrishnan, T.T. John, C.S. Kartha, K.P. Vijayakumar, T. Abe, and Y. Kashiwaba, Semicond. Sci. Technol. 20, 1162 (2005).

    Article  Google Scholar 

  62. T.T. John, S. Bini, Y. Kashiwaba, T. Abe, Y. Yasuhiro, C.S. Kartha, and K.P. Vijayakumar, Semicond. Sci. Technol. 18, 491 (2003).

    Article  Google Scholar 

  63. M. Mathew, R. Jayakrishnan, P.M. Ratheesh Kumar, C. Sudha Kartha, and K.P. Vijayakumar, J. Appl. Phys. 100, 033504 (2006).

    Article  Google Scholar 

  64. W. Chen, J.O. Bovin, A.G. Joly, S. Wang, F. Su, and G. Li, J. Phys. Chem. B 108, 11927 (2004).

    Article  Google Scholar 

  65. Z.P. Ai, Opt. Mater. 24, 589 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kraini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraini, M., Bouguila, N., Koaib, J. et al. Experiments on In2S3:Sn Thin Films with up to 1% Tin Content. J. Electron. Mater. 45, 5936–5947 (2016). https://doi.org/10.1007/s11664-016-4823-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4823-8

Keywords

Navigation