Skip to main content
Log in

Investigation of the Physical Properties of Sprayed Nanocrystalline In2S3 Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

In2S3 films have been grown on preheated glass substrate by spray pyrolysis. Indium chloride and thiourea in the molar ratio S:In = 2 were used as reagents. Substrate temperature was fixed at 613 K. These films adhered well to the substrate and were approximately 2 μm thick. Structural, morphological, optical, and electrical properties of the as-grown In2S3 films were studied by use of x-ray diffraction (XRD) analysis, energy-dispersive spectroscopy, atomic force microscopy (AFM), optical absorption spectroscopy, and impedance spectroscopy. XRD revealed well crystallized films oriented in the (400) direction corresponding to the cubic β-In2S3 phase. The surface of the films was smooth; average roughness was 5 nm. The AFM image revealed that the films were nanopolycrystalline and contained grains in the range 20–30 nm. Optical transmission in the visible and near-infrared regions was 80%. The direct band-gap energy was 2.62 eV. The electrical data were analyzed on the basis of the impedance Cole–Cole plots in the frequency range 0.1 Hz to 100 kHz at room temperature. Constant-phase elements were used in equivalent electrical circuits for fitting of experimental impedance data. The experimental results were fitted to the equivalent electrical circuit by use of Z-view software. The conductivity of grains and grain boundaries was estimated. The gas-sensing properties of the sample were investigated on the basis of the change in conductance as a result of adsorption and desorption of atmospheric oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Barreau, S. Marsillac, D. Albertini, and J.C. Bernède, Thin Solid Films 403–404, 331 (2002).

    Article  Google Scholar 

  2. E.B. Yousfi, T. Asikainen, V. Pietu, P. Cowache, M. Powalla, and D. Lincot, Thin Solid Films 183, 361 (2000).

    Google Scholar 

  3. N. Barreau, J.C. Bernède, and S. Marsillac, J. Cryst. Growth 241, 51 (2002).

    Article  Google Scholar 

  4. I. Puspitasari, T.P. Gujar, K.D. Jung, and O.S. Joo, J. Mater. Process. Technol. 201, 775 (2008).

    Article  Google Scholar 

  5. W. Vallejo and J. Clavijo, Braz. J. Phys. 40, 30 (2010).

    Article  Google Scholar 

  6. A. Datta, S. Gorai, D. Ganguli, and S. Chaudhuri, Mater. Chem. Phys. 102, 195 (2007).

    Article  Google Scholar 

  7. S. Gorai and S. Chaudhuri, Mater. Chem. Phys. 89, 332 (2005).

    Article  Google Scholar 

  8. A. Datta, S.K. Panda, D. Ganguli, P. Mishra, and S. Chaudhuri, Cryst. Growth Des. 7, 163 (2007).

    Article  Google Scholar 

  9. S. Yu, L. Shu, Y. Qian, Y. Xie, and J. Yang, Mater. Res. Bull. 33, 717 (1998).

    Article  Google Scholar 

  10. X. Chen, Z. Zhang, X. Zhang, J. Liu, and Y. Qian, Chem. Phys. Lett. 407, 482 (2005).

    Article  Google Scholar 

  11. J. Yang, C. Lin, Z. Wang, and J. Lin, Inorg. Chem. 45, 8973 (2006).

    Article  Google Scholar 

  12. L.Y. Chen, Z.D. Zhang, and W.Z. Wang, J. Phys. Chem. C 112, 4117 (2008).

    Article  Google Scholar 

  13. Y. Liu, H. Xu, and Y. Qian, Cryst. Growth Des. 6, 1304 (2006).

    Article  Google Scholar 

  14. N. Bouguila, H. Bouzouita, E. Lacaze, A.B. Amara, H. Bouchriha, and A. Dhouib, J. Phys. III Fr. 7, 1647 (1997).

    Google Scholar 

  15. J. Watson, Sens. Actuators 5, 29 (1984).

    Article  Google Scholar 

  16. E.F. Schipper, R.P.H. Kooyman, R.G. Heidman, and J. Greve, Sens. Actuators B 24–25, 90 (1995).

    Article  Google Scholar 

  17. A.D. Brailsford and E.M. Logothetis, Sens. Actuators B 52, 195 (1998).

    Article  Google Scholar 

  18. J.H. Yu and G.M. Choi, Sens. Actuators B 52, 251 (1998).

    Article  Google Scholar 

  19. W.P. Kang and C.K. Kim, Appl. Phys. Lett. 63, 421 (1993).

    Article  Google Scholar 

  20. D. Le Bellac, G.A. Niklasson, and C.G. Granqvist, Europhys. Lett. 32, 155 (1995).

    Article  Google Scholar 

  21. J. George, K.S. Joseph, B. Pradeep, and T.I. Palson, Phys. Status Solidi (a) 106, 123 (1988).

    Article  Google Scholar 

  22. K. Bouabid, A. Ihlal, A. Outzourhit, and E.L. Ameziane, Act. Passiv. Electron. Compon. 27, 207 (2004).

    Article  Google Scholar 

  23. H.M. Pathan, C.D. Lokhande, S.S. Kulkarni, D.P. Amalnerkar, T. Seth, and S.H. Han, Mater. Res. Bull. 40, 1018 (2005).

    Article  Google Scholar 

  24. S. Elfarrass, B. Hartiti, A. Ridah, and P. Thevenin, J. Mater. Environ. Sci. 6, 487 (2015).

    Google Scholar 

  25. E. Şentürk, J. Sol. State Chem. 177, 1508 (2004).

    Article  Google Scholar 

  26. S. Komornicki, M. Radecka, and M. Rekas, J. Mater. Sci. 12, 11 (2001).

    Google Scholar 

  27. J.H. Park and B.C. Choi, J. Cryst. Growth 276, 465 (2005).

    Article  Google Scholar 

  28. M. Vijayakumar, P. Muralidharan, M. Venkateswarlu, and N. Satyanarayana, Mater. Chem. Phys. 95, 16 (2006).

    Article  Google Scholar 

  29. A.K. Jonscher, Dielectric Relaxation in Solids (London: Chelsea Dielectric Press, 1983).

    Google Scholar 

  30. A.K. Jonscher, Nature 267, 673 (1977).

    Article  Google Scholar 

  31. N. Revathi, P. Prathap, Y.P.V. Subbaiah, and K.T.R. Reddy, J. Phys. D Appl. Phys. 41, 155404 (2008).

    Article  Google Scholar 

  32. D.K. Paul and S.S. Mitra, Phys. Rev. 34, 1000 (1973).

    Google Scholar 

  33. P. Knauth and J. Schoonman, Nanostructured Materials (Dordrecht: Kluwer Academic Publishers, 2002), p. 111.

    Google Scholar 

  34. G.F. Pike, Rev. B 6, 1572 (1972).

    Article  Google Scholar 

  35. A. Oberlin, G. Terriere, and J.L. Boulmier, Tanso 83, 153 (1975).

    Article  Google Scholar 

  36. A. Oberlin, G. Terriere, and J.L. Boulmier, Tanso 80, 29 (1975).

    Article  Google Scholar 

  37. D.H. Yoon and G.M. Choi, Sensor. Actuators B 45, 251 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bouguila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouguila, N., Kraini, M., Najeh, I. et al. Investigation of the Physical Properties of Sprayed Nanocrystalline In2S3 Films. J. Electron. Mater. 44, 4213–4219 (2015). https://doi.org/10.1007/s11664-015-3953-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3953-8

Keywords

Navigation