Skip to main content
Log in

Influence of annealing temperature on the properties of In2S3:Sn films deposited by spray pyrolysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin-doped In2S3 films were grown by the chemical spray pyrolysis method using compressed air as a carrier gas. The films were annealed for 2 h at different temperatures (300, 400 and 500 °C) under nitrogen atmosphere. X-ray diffraction data show that In2S3:Sn films are polycrystalline with a cubic phase. The film grain size increases from 26 to 37 nm. The residual microstrain and dislocation network reach the values 3.08 × 10−3 and 0.73 × 1011 lines cm−2, respectively, at the annealing temperature of 500 °C. Transmittance decreases with increasing temperature. It varies in the range of 65–85 % in visible and infrared regions. The optical band gap is found to vary in the range 2.4–2.85 eV for direct transitions. The best surface state is obtained at 400 °C. The RMS roughness was estimated to be 39.4–19.8 nm. Electrical measurements at room temperature show that the sheet resistance decreases down to 130 Ω at 500 °C. The conductance and capacitance characterization at ambient temperature are also investigated and give interesting physical properties for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Naik, S.K. Parida, C. Kumar, R. Ganesan, K.S. Sangunni, J. Alloy. Compd. 522, 172–177 (2012)

    Article  Google Scholar 

  2. K. Hara, K. Sayama, H. Arakawa, Sol. Energy Mater. Sol. Cells 62, 441–447 (2000)

    Article  Google Scholar 

  3. L. Bhira, H. Essaidi, S. Belgacem, G. Couturier, J. Salardenne, N. Barreau, J.C. Bernede, Phys. Status Solidi A 181, 427–435 (2000)

    Article  Google Scholar 

  4. A.S. Cherian, M. Mathew, C.S. Kartha, K.P. Vijayakumar, Thin Solid Films 518, 1779–1783 (2010)

    Article  Google Scholar 

  5. P.M. Sirimanne, S. Shiozaki, N. Sonoyama, T. Sakata, Sol. Energy Mater. Sol. Cells 62, 247–258 (2000)

    Article  Google Scholar 

  6. N. Bouguila, A. Timoumi, H. Bouzouita, E. Lacaze, H. Bouchriha, B. Rezig, Eur. Phys. J. Appl. Phys. 63, 20301 (2013)

    Article  Google Scholar 

  7. J. Herrero, J. Ortega, Sol. Energy Mater. 17, 357–368 (1988)

    Article  Google Scholar 

  8. T.T. John, M. Mathew, C.S. Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, Sol. Energy Mater. Sol. Cells 89, 27–36 (2005)

    Article  Google Scholar 

  9. M. Mathew, R. Jayakrishnan, P.M. Ratheesh Kumar, C. Sudha Kartha, K.P. Vijayakumar, J. Appl. Phys. 100, 033504 (2006)

    Article  Google Scholar 

  10. Z. Li, X. Tao, Z. Wu, P. Zhang, Z. Zhang, Ultrason. Sonochem. 16, 221–224 (2009)

    Article  Google Scholar 

  11. B. Asenjo, C. Sanz, C. Guillén, A.M. Chaparro, M.T. Gutiérrez, J. Herrero, Thin Solid Films 515, 6041–6044 (2007)

    Article  Google Scholar 

  12. N. Barreau, J.C. Bernède, C. Deudon, L. Brohan, S. Marsillac, J. Cryst. Growth 241, 4–14 (2002)

    Article  Google Scholar 

  13. P.G.S. Abadi, M.S. Niasari, F. Davar, Superlattice Microstruct. 53, 76–88 (2013)

    Article  Google Scholar 

  14. R.S. Becker, T. Zheng, J. Elton, M. Saeki, Sol. Energy Mater. 13, 97–107 (1986)

    Article  Google Scholar 

  15. M. Mathew, M. Gopinath, C. Sudha Kartha, K.P. Vijayakumar, Y. Kashiwaba, T. Abe, Sol. Energy 84, 888–897 (2010)

    Article  Google Scholar 

  16. M. Kilani, C. Guasch, M. Castagne, N.K. Turki, J. Mater. Sci. 47, 3198–3203 (2012)

    Article  Google Scholar 

  17. M. Kraini, N. Bouguila, I. Halidou, A. Timoumi, S. Alaya, Mater. Sci. Semicond. Process. 16, 1388–1396 (2013)

    Article  Google Scholar 

  18. U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, E.J. Mittemeijer, J. Appl. Cryst. 38, 1–29 (2005)

    Article  Google Scholar 

  19. B. Yahmadi, N. Kamoun, C. Guasch, R. Bennaceur, Mater. Chem. Phys. 127, 239–247 (2011)

    Article  Google Scholar 

  20. G. Will, Powder Diffraction (Springer, Berlin, 2006)

    Google Scholar 

  21. N. Revathi, P. Prathap, R.W. Miles, K.T. Ramakrishna, Reddy. Sol. Energy Mater. Sol. Cells 94, 1487–1491 (2010)

    Article  Google Scholar 

  22. K. Ravichandran, P. Philominathan, Sol. Energy 82, 1062–1066 (2008)

    Article  Google Scholar 

  23. V. Bilgin, S. Kose, F. Atay, I. Akyuz, Mater. Chem. Phys. 94, 103–108 (2005)

    Article  Google Scholar 

  24. P. Roy, S.K. Srivastava, Thin Solid Films 496, 293–298 (2006)

    Article  Google Scholar 

  25. S.J. Ikhmayies, R.N. Ahmad-Bitar, Appl. Surf. Sci. 255, 2627–2631 (2008)

    Article  Google Scholar 

  26. A. Larena, F. Millan, G. Perez, G. Pinto, Appl. Surf. Sci. 187, 339–346 (2002)

    Article  Google Scholar 

  27. M. Öztas, M. Bedir, Thin Solid Films 516, 1703–1709 (2008)

    Article  Google Scholar 

  28. N. Pentyala, R.K. Guduru, E.M. Shnerpunas, P.S. Mohanty, Appl. Surf. Sci. 257, 6850–6857 (2011)

    Article  Google Scholar 

  29. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  30. S. Ilican, Y. Caglar, M. Caglar, J. Optoelectron. Adv. M. 10, 2578–2583 (2008)

    Google Scholar 

  31. S. Ilican, Y. Caglar, M. Caglar, M. Kundakci, A. Ates, Int. J. Hydrogen Energy 12, 5201–5207 (2009)

    Article  Google Scholar 

  32. C.D. Lokhande, A.U. Ubale, P.S. Patil, Thin Solid Films 302, 1–4 (1997)

    Article  Google Scholar 

  33. R.S. Mane, C.D. Lokhande, Mater. Chem. Phys. 82, 347–354 (2003)

    Article  Google Scholar 

  34. J.D. Dow, D. Redfield, Phys. Rev. B 5, 594 (1972)

    Article  Google Scholar 

  35. N. Barreau, S. Marsillac, D. Albertini, J.C. Bernede, Thin Solid Films 403–404, 331–334 (2002)

    Article  Google Scholar 

  36. J. El Ghoul, C. Barthou, L. El Mir, Phys. E. 44, 1910–1915 (2012)

    Article  Google Scholar 

  37. F. Rahman, J. Podder, Surf. Rev. Lett. 20, 1350014 (2013)

    Article  Google Scholar 

  38. M. Nisha, S. Anusha, A. Antony, R. Manoj, M.K. Jayaraj, Appl. Surf. Sci. 252, 1430–1435 (2005)

    Article  Google Scholar 

  39. H. Li, X. Guo, Curr. Appl. Phys. 13, 500–504 (2013)

    Article  Google Scholar 

  40. I. Najeh, N. Ben Mansour, M. Mbarki, A. Houas, J.P. Nogier, L. El Mir, Solid State Sci. 11, 1747–1751 (2009)

    Article  Google Scholar 

  41. H. Nefzi, F. Sediri, H. Hamzaoui, N. Gharbi, J. Solid State Chem. 190, 150–165 (2012)

    Article  Google Scholar 

  42. S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256–263 (2004)

    Article  Google Scholar 

  43. K.K. Patanakar, S.A. Patil, K.V. Sivakumar, R.P. Mahajan, Y.D. Kolekar, M.B. Kothale, Mater. Chem. Phys. 65, 97–102 (2001)

    Article  Google Scholar 

  44. D.M. Taylor, H.L. Gomez, J. Phys. D Appl. Phys. 28, 2554–2568 (1995)

    Article  Google Scholar 

  45. A.F. Özdemir, A. GÖk, A. Türüt, Thin Solid Films 425, 210–215 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the funding of different organizations: MINECO, Spain (project MAT2012-36754-C02-01); and Xunta de Galicia, Spain (Grupos Ref. Comp. GRC2013-044, FEDER Funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kraini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraini, M., Bouguila, N., El Ghoul, J. et al. Influence of annealing temperature on the properties of In2S3:Sn films deposited by spray pyrolysis. J Mater Sci: Mater Electron 26, 5774–5782 (2015). https://doi.org/10.1007/s10854-015-3136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3136-7

Keywords

Navigation