Skip to main content

Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging?

Abstract

Silver (Ag) has been under development for use as interconnect material for power electronics packaging since the late 1980s. Despite its long development history, high thermal and electrical conductivities, and lead-free composition, sintered Ag technology has limited market penetration. This review sets out to explore what is required to make this technology more viable. This review also covers the origin of sintered Ag, the different types and application methods of sintered Ag pastes and laminates, and the long-term reliability of sintered Ag joints. Sintered Ag pastes are classified according to whether pressure is required for sintering and further classified according to their filler sizes. This review discusses the main methods of applying Ag pastes/laminates as die-attach materials and the related processing conditions. The long-term reliability of sintered Ag joints depends on the density of the sintered joint, selection of metallization or plating schemes, types of substrates, substrate roughness, formulation of Ag pastes/laminates, joint configurations (i.e., joint thicknesses and die sizes), and testing conditions. This paper identifies four challenges that must be overcome for the proliferation of sintered Ag technology: changes in materials formulation, the successful navigation of the complex patent landscape, the availability of production and inspection equipment, and the health concerns of Ag nanoparticles. This paper is expected to be useful to materials suppliers and semiconductor companies that are considering this technology for their future packages.

References

  1. V.R. Manikam and K.Y. Cheong, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457 (2011).

    Article  Google Scholar 

  2. K. Suganuma, S.J. Kim, and K.S. Kim, JOM 61, 64 (2009).

    Article  Google Scholar 

  3. G. Miller, Proceedings of the 6th International Conference on Integrated Power Electronics System (Nuremberg, 2010), p. 1.

  4. C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, and C. Raynaud, Mater. Sci. Eng. B176, 283 (2011).

    Article  Google Scholar 

  5. K.S. Siow, J. Alloys Compd. 514, 6 (2012).

    Article  Google Scholar 

  6. G. Bai, Low-temperature sintering of nanoscale silver paste for semiconductor device interconnection (Ph.D. thesis, Virginia Polytechnic Institute and State University, 2005).

  7. P. Panaccione, T. Wang, X. Chen, S. Luo, and G.Q. Lu, Proceedings of the 6th International Conference and Exhibition on Device Packaging (Arizona, 2010), p. 1.

  8. J.G. Bai, Z.Z. Zhang, J.N. Calata, and G.Q. Lu, IEEE Trans. Compon. Packag. Technol. 29, 589 (2006).

    Article  Google Scholar 

  9. U. Scheuermann, Microelectron. Reliab. 49, 1319 (2009).

    Article  Google Scholar 

  10. C. Gobl and J. Faltenbacher, 6th International Conference on Integrated Power Electronics Systems (Nuremberg, 2010), p. 1.

  11. H. Schwarzbauer, Method of securing electronic components to a substrate, US4810672, Siemens, USA (1989).

  12. H. Schwarzbauer, Method and apparatus for fastening electronic components to substrates, US4903885, Siemens, USA (1990).

  13. H. Schwarzbauer, Apparatus for fastening electronic components to substrates, US5058796, Siemens, USA (1991).

  14. H. Schwarzbauer and R. Kuhnert, IEEE Trans. Ind. Appl. 27, 93 (1991).

    Article  Google Scholar 

  15. G.Q. Lu, G. Lei, and J. Calata, Nanoscale Metal Paste for Interconnect and Method of Use, WO2009/094537A2 (Blacksburg: Virginia Tech Intellectual Properties, 2009).

    Google Scholar 

  16. Namics Corp, History, http://www.namics.co.jp/e/company/enkaku.html. Accessed 22 May 2013.

  17. V. Smet, M. Jamal, F. Waldron, F. Stam, A. Mathewson, and K.M. Razeeb, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 533 (2013).

    Article  Google Scholar 

  18. C.H. Sha and C.C. Lee, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 194 (2012).

    Article  Google Scholar 

  19. M. Kuramoto, T. Kunimune, S. Ogawa, M. Niwa, K.S. Kim, and K. Suganuma, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 548 (2012).

    Article  Google Scholar 

  20. H. Schwarzbauer, Pressure sintering method for fastening electronic components on a substrate, US5893511, Siemens, USA (1999).

  21. J. Wang and C.C. Lee, IEEE Trans. Compon. Packag. Manuf. Technol. 33, 10 (2010).

    Article  Google Scholar 

  22. H. Schwarzbauer, Method and apparatus for fastening semiconductor components to substrates US4903886, Siemens, USA (1990).

  23. C.H. Sha and C.C. Lee, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1983 (2011).

    Article  Google Scholar 

  24. J. Kahler, N. Heuck, A. Stranz, A. Waag, and E. Peiner, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 199 (2012).

    Article  Google Scholar 

  25. W. Baumgartner and J. Fellinger, Method of fastening electronic components to a substrate using a film, US4856185, Siemens, USA (1989).

  26. J. Kahler, N. Heuck, G. Palm, A. Stranz, A. Waag, and E. Peiner, Electronics System Integration Technology Conference, ESTC 2010 Proceedings (Berlin, 2010), p. 1.

  27. Z. Wei, M. Zhou, H. Qiao, L. Zhu, H. Yang, and T. Xia, J. Nanomater. 968058, 1 (2009).

    Google Scholar 

  28. A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C.X. Xu, Appl. Phys. Lett. 97, 1531171 (2010).

    Google Scholar 

  29. H. Schwarzbauer, Heat conducting adhesive joint with an adhesive-filled porous heat conductor, US6823915B2, Siemens, USA (2004).

  30. M. Tobita and Y. Yasuda, Interconnect material and interconnect formation method, US2009/0180914A1, Hitachi, USA (2009).

  31. H. Hozoji, T. Morita and H. Sasaki, Method for mounting an electronic part on a substrate using a liquid containing metal particles, US7393771B2, Hitachi, USA (2008).

  32. T. Morita, E. Ide, Y. Yasuda, A. Hirose, and K. Kobayashi, Jpn. J. Appl. Phys. 47, 6615 (2008).

    Article  Google Scholar 

  33. S. Wang, H. Ji, M. Li, and C. Wang, Mater. Lett. 85, 61 (2012).

    Article  Google Scholar 

  34. W. Schmitt, M. Schafer, and H. W. Hagedorn, Controlling the porosity of metal pastes for pressure free, low temperature sintering process, US2010/0051319A1, W.C. Heraeus, Germany (2010).

  35. W. Schmitt, T. Dickel and K. Stenger, Process and paste for contacting metal surfaces, US2009/0134206A1, W.C. Heraeus, Germany (2009).

  36. Y. Mei, G.Q. Lu, X. Chen, S. Luo, and D. Ibitayo, IEEE Trans. Device Mater. Reliab. 11, 316 (2011).

    Article  Google Scholar 

  37. S.K. Sharma and J. Spitz, Thin Solid Films 65, 339 (1980).

    Article  Google Scholar 

  38. K. Yamakawa and K. Mine, Pasty silver particle composition, process for producing solid silver, solid silver, joining method and process for producing printed wiring board, US7766218, Nihon Handa (2010).

  39. M. Kuramoto, S. Ogawa, M. Niwa, K.S. Kim, and K. Suganuma, IEEE Trans. Compon. Packag. Manuf. Technol. 33, 801 (2010).

    Article  Google Scholar 

  40. I. J. Rasiah, Electrically conductive thermal interface, US7083850B2, Honeywell Internationa, USA (2006).

  41. T. Kunimune, M. Kuramoto, S. Ogawa, M. Nogi, and K. Suganuma, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 363 (2013).

    Article  Google Scholar 

  42. J. Yan, G. Zou, A. Wu, J. Ren, J. Yan, A. Hu, and Y. Zhou, Scripta Mater. 66, 582 (2012).

    Article  Google Scholar 

  43. A. Oestreicher, T. Röhricha, J. Wildenb, M. Lerchc, A. Jakobd, and H. Langd, Appl. Surf. Sci. 265, 239 (2013).

    Article  Google Scholar 

  44. T. Wang, X. Chen, G.Q. Lu, and G. Lei, J. Electron. Mater. 36, 1333 (2007).

    Article  Google Scholar 

  45. Z. Zhang and G.Q. Lu, IEEE Trans. Electron. Packag. Manuf. 25, 279 (2002).

    Article  Google Scholar 

  46. Y. Mei, Y. Cao, G. Chen, X. Li, G.Q. Lu, and X. Chen, IEEE Trans. Device Mater. Reliab. 13, 258 (2013).

    Article  Google Scholar 

  47. I. Nikitin, Method of manufacturing a semiconductor device, US7754533, Infineon Tech (2010).

  48. O. Khaselev, B. Singh, B. Mo, M. Marczi, and M. Boureghda, Sintering materials and attachment methods using same, US2012/0114927, Fry’s Metal, USA (2012).

  49. H. Schwarzbauer, Method for fastening a semiconductor body provided with at least one semiconductor componet to a substrate, US5169804, Siemens, USA (1992).

  50. Alent Plc Alpha, Argomax™, http://alphadieattach.com/, Accessed 22 May 2013.

  51. S. Egelkraut, L. Frey, M. Knoerr, and A. Schletz, Proceedings of the 12th Electronic Packaging Technology Conference (Singapore, 2010), p. 660.

  52. R. Kisiel, Z. Szczepanski, P. Firek, J. Grochowski, M. Mysliwiec, and M. Guziewicz, Proceedings of the International Spring Semiconductor Electronic Technology (Bad Aussee, 2012), p. 144.

  53. N. Heuck, S. Mueller, G. Palm, A. Bakin, and A. Waag, iMAPS Proceedings of HiTEC 2010, (2010), p. 1.

  54. N. Heuck, G. Palm, T. Sauerberg, A. Stranz, A. Waag, and A. Bakin, Mater. Sci. Forum 645–648, 741 (2010).

    Article  Google Scholar 

  55. T. Wang, M. Zhao, X. Chen, G.Q. Lu, K. Ngo, and S. Luo, J. Electron. Mater. 41, 2543 (2012).

    Article  Google Scholar 

  56. R. Amro, J. Lutz, J. Rudzki, R. Sittig, and M. Thoben, Proceedings of the 18th International Symposium on Power Semiconductor Devices and ICs (ISPD’06), (Naples, 2006), p. 1.

  57. T. Stockmeier, Proceedings of the International Symposium on Power Semiconductor Devices and ICs (Orlando, 2008), p. 12.

  58. R. Amro, J. Lutz, J. Rudzki, M. Thoben, and A. Lindemann, Proceedings of the European Conference on the Power Electronics Application 2005 (Dresden, 2005), p. 1.

  59. J. Steger, 1st International Electric Drives Production Conference 2011, EDPC-2011 Proceedings (Nuremberg, 2011), p. 60.

  60. N. Pluschke and P. Beckedahl, IEEE International Symposium on Industrial Electronics (Hangzhou, 2012), p. 420.

  61. U. Scheuermann, Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC (Washington DC, 2009), p. 472.

  62. R. Eisele, J. Rudzki, and M. Kock, International Conference for Power Electronics, Intelligent Motion, Power Quality (Nuremberg, Curran Associates, 2007), p. 60.

  63. T. Herboth, C. Fruh, M. Gunther, and J. Wilde, 13th International Thermal, Mechanical Multi-Physics Simulation Experiment in Microelectronic Microsystem (Cascais, 2012), p. 1.

  64. M. Knoerr, S. Kraft, and A. Schletz, Proceedings of the 12th Electronic Packaging Technology Conference (Singapore, 2010), p. 56.

  65. S. Sakamoto, S. Nagao, and K. Suganuma, J Mater. Sci. (2013). doi:10.1007/S10854-013-1138-X.

    Google Scholar 

  66. S. Sakamoto, T. Sugahara, and K. Suganuma, J. Mater. Sci. 24, 1332 (2013).

    Google Scholar 

  67. K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, and M. Nogi, Microelectron. Reliab. (2011). doi:10.1016/j.microrel.2011.07.088.

    Google Scholar 

  68. J.G. Bai and G.Q. Lu, IEEE Trans. Device Mater. Reliab. 6, 436 (2006).

    Article  Google Scholar 

  69. G.C. Dong, X. Chen, and G. Q. Lu, 11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System (Orlando, 2008), p. 793.

  70. H. Ogura, M. Maruyama, R. Matsubayashi, T. Ogawa, S. Nakamura, T. Komatsu, H. Nagasawa, A. Ichimura, and S. Isoda, J. Electron. Mater. 39, 1233 (2010).

    Article  Google Scholar 

  71. Y. Mei, G. Chen, X. Li, G.Q. Lu, and X. Chen, Solder. Surf. Mt. Technol. 25, 107 (2013).

    Article  Google Scholar 

  72. D. Yu, X. Chen, G. Chen, G. Lu, and Z. Wang, Mater. Des. 30, 4574 (2009).

    Article  Google Scholar 

  73. M. Knoerr and A. Schletz, Proceedings of the 7th International Conference on Integrated Power Systems IEEE (2010), p. 1.

  74. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (New York: Wiley, 1996), p. 786.

    Google Scholar 

  75. K.S. Siow, A.A.O. Tay, and P. Oruganti, Mater. Sci. Technol. 20, 285 (2004).

    Article  Google Scholar 

  76. S.C. Tjong and H. Chen, Mater. Sci. Eng. R 45, 1 (2004).

    Article  Google Scholar 

  77. V. Krstic, U. Erb, and G. Palumbo, Scripta Metall. et Mater. 29, 1501 (1993).

    Article  Google Scholar 

  78. J.R. Groza, Nanostructured Materials: Processing, Properties and Potential Applications, ed. C.C. Koch (Norwich: Noyes, 2002), p. 115.

    Google Scholar 

  79. S. Joo and D.F. Baldwin, Nanotechnology 21, 055204 (2010).

    Article  Google Scholar 

  80. P. Peng, A. Hu, H. Hong, A.P. Gerlich, B. Zhao, and N.Y. Zhou, J. Mater. Chem. 22, 12997 (2012).

    Article  Google Scholar 

  81. Y. Yasuda, S. Terada, T. Morita, and H. Kawaji, Jpn. J. Appl. Phys. 51, 025001 (2012).

    Google Scholar 

  82. E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Mater. Sci. Forum 512, 383 (2006).

    Article  Google Scholar 

  83. T. Kunimune, M. Kuramoto, S. Ogawa, M. Niwa, M. Nogi, and K. Suganuma, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 909 (2012).

    Article  Google Scholar 

  84. F. Lang, H. Nakagawa, M. Aoyagi, H. Ohashi, and H. Yamaguchi, J. Mater. Sci. 21, 917 (2010).

    Google Scholar 

  85. A. Masson, C. Buttay, H. Morel, C. Raynaud, S. Hascoet, and L. Gremillard, Proceedings of the 14th European Conference on Power Electronic Application (Birmingham, 2011), p. 1.

  86. L.A. Navarro, X. Perpina, M. Vellvehi, and X. Jorda, Ingenieria Mecanica Technologia Y Dessarrollo 4, 97 (2012).

    Google Scholar 

  87. R. Mrossko, H. Oppermann, B. Wunderle, and B. Michel, Proceedings of the NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011 (Boston, 2011), p. 149.

  88. X. Li, X. Chen and G.Q. Lu, Proceedings of the 13th International Conference Electronic Packaging Technology High Density Packaging (Guilin, 2012), p. 1209.

  89. H. Ma and J.C. Suhling, J. Mater. Sci. 44, 1141 (2009).

    Article  Google Scholar 

  90. N. Heuck, A. Langer, A. Stranz, G. Palm, R. Sittig, A. Bakin, and A. Waag, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1846 (2011).

    Article  Google Scholar 

  91. M. Kuramoto, S. Ogawa, M. Niwa, K.S. Kim, and K. Suganuma, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 653 (2011).

    Article  Google Scholar 

  92. Heraeus, Cross-licensing agreement on novel sinter technology signed, Bodo’s Power System, (May 2012).

  93. K. Guth and I. Nikitin, Module including a sintered joint bonding a semiconductor chip to a copper surface, US8253233, Infineon Tech, USA (2012).

  94. T. Shibata, Y. Ishikawa, and T. Ichiyanagi, Bonding method, US7770781, Toyota Jidosha (2010).

  95. R. Bayerer, Method of fabricating a high temperature compatible power semiconductor module, US2011/0070695, Infineon Tech, USA. (2011).

  96. R. Eisele and M. Kock, Method for the low pressure sintering of electronic units to heat sinks, US8118211, Danfoss Silicon Power , USA(2012).

  97. Y. Yato, T. Nakajo and H. Oka, Semiconductor device and manufacturing method of the same, US2009/0189264A1, Renesas Technology, USA (2009).

  98. C. Goebl, P. Beckedahl, and H. Heilbronner, Power semiconductor component with metal contact layer and production method thereof, US8110925, Semikron Elektronik (2012).

  99. R. Speckels, K. Guth, and H. Hartung, Apparatus and methods for producing semiconductor modules, US7851334, Infineon Tech. (2010).

  100. G. Palm, Method for securing electronic components to a substrate, US2005/0247760A1, Semikron Elektronik (2005).

  101. C. Gobl, Apparatus and clocked method for pressure-sintered bonding, US2007/0131353A1, Semikron Elektronik (2007).

  102. W. Knapp, Method for mounting electronic components on substrates, US6935556B2, ABB Research, USA (2005).

  103. S.W.P. Wijnhoven, W.J.G.M. Peijnenburg, C.A. Herbets, W.I. Hagens, A.G. Oomen, E.H.W. Heugens, B. Roszek, J. Bisschops, I. Gosens, D. Van de Meent, S. Dekkers, W.H. De Jong, M. Van Zijverden, A.J.A.M. Sips, and R.E. Geertsma, Nanotoxicology 3, 109 (2009).

    Article  Google Scholar 

  104. C. Voelker, M. Oetken, and J. Oehlmann, The Biological Effects and Possible Modes of Action of Nanosilver (New York: Springer, 2013).

    Google Scholar 

  105. S.F. Hansen and A. Baun, Nat. Nanotech. 7, 409 (2012).

    Article  Google Scholar 

  106. R. de Lima, A.B. Seabra, and N. Durán, J. Appl. Toxicol. 32, 867 (2012).

    Article  Google Scholar 

  107. M. Maruyama, R. Matsubayashi, H. Iwakuro, S. Isoda, and T. Komatsu, Appl. Phys. A 93, 467 (2008).

    Article  Google Scholar 

  108. Y. Hisaeda, K. Endoh, and S. Kurita, Joint Conference of “International Conference on Electronics Packaging” and “IMAPS All Asia Conference” (Tokyo, 2012), p. 1.

  109. P. Gleeson, J. England, R. Kuder, J. Eckenrode, and J. Gutierrez, 3rd Advanced Technology Workshop and Tabletop Exhibition on Automotive Microelectronics and Packaging (Dearborn, Michigan, iMAPS, 2012), p. 1.

  110. A. Dhakal, Transient liquid phase bonding and sintered silver paste for die-attach/substrate-attach in high power, high temperature applications, http://www.mrc.uidaho.edu/~atkinson/ECE591/Fa2011/Presentations/Dhakal.pdf. Accessed 22 May 2013.

  111. S. Hascoet, C. Buttay, D. Planson, R. Chiriac, and A. Masson, Mater. Sci. Forum 740–742, 851 (2013).

    Article  Google Scholar 

  112. W. Sabbah, R. Riva, S. Hascoet, C. Buttay, S. Azzopardi, E. Woirgard, D. A. Planson, and R. Meuret, Proceedings of the 7th International Conference on Integrated Power Systems (Nuremberg, 2012), p. 1.

  113. Namics Corp, Low-temperature Sintered Conductive Pastes Using MO Technology http://www.namics.co.jp/e/product/development01.html Accessed 22 May 2013.

  114. NBE Tech, Products, Technology and Applications, http://www.nbetech.com/. Accessed 22 May 2013.

  115. Nihon Superior, Nihon Superior to Exhibit Range of Innovative Products at the 2013 IPC APEX EXPO, http://news.thomasnet.com/companystory/Nihon-Superior-to-Exhibit-Range-of-Innovative-Products-at-the-2013-IPC-APEX-EXPO-30000371. Accessed 22 May 2013.

  116. Senju Metal, Ag Nanopaste for Low Temperature Sintering, http://www.senju-m.co.jp/en/download/pdf/SMIC_ST2011_EN_14.pdf. Accessed 22 May 2013.

  117. Y. Akada, H. Tatsumi, T. Yamaguchi, A. Hirose, T. Morita, and E. Ide, Mater. Trans. 49, 1537 (2008).

    Article  Google Scholar 

  118. K.S. Siow, 35th International Electronics Manufacturing Technology Conference (Ipoh, Malaysia, 2012), p. 1.

  119. D. Berry, L. Jiang, K. Ngo, G. Lei, S. Luo, and G.Q. Lu, Proceedings of the PCIM 2013 (Nuremberg, 2013), p. 1.

  120. R. Tiziani and X. Cao, Proceedings of the Advanced Packaging Conference Packaging Solution for the New Technology (Semicon Europa) (Dresden, Germany, 2012), p. 1.

  121. T. Serizawa, CESA Congress Automotive Electronics Intl Conference and Exhibition (Paris, SIA, 2012), p. 1.

  122. C. Fruh, M. Gunther, M. Rittner, A. Fix and M. Nowottnick, Proc. 2010 Electron. Syst. Integr. Tech. Conf. (Berlin, 2010), p. 1.

  123. Alent Alpha and Boschman Technologies, Argomax™ and Boschman “S-Star Auto” Press, http://alphadieattach.com/lead-frame.asp. Accessed 22 May 2013.

  124. Alent Alpha and Fico Besi, Argomax™, Datacon Evo 2200, Fico sinter press, http://alphadieattach.com/module.asp. Accessed 22 May 2013.

  125. G. Locatelli, Hydraulic Press, http://www.locatellimeccanica.com/hydraulic-presses. Accessed 22 May 2013.

  126. J. Kahler, N. Heuck, A. Wagner, A. Stranz, E. Peiner, and A. Waag, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 1587 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank his friends, colleagues, previous employers and materials and equipment suppliers who helped him to appreciate this sintered Ag technology. Special thanks go to Z. Chen (NTU) for valuable comments on this paper and to Y.M. Lam (NTU) and another former colleague who wishes to remain anonymous for carefully reviewing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim S. Siow.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siow, K.S. Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging?. J. Electron. Mater. 43, 947–961 (2014). https://doi.org/10.1007/s11664-013-2967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2967-3

Keywords

  • Sintered silver joint
  • lead-free die-attach material
  • nano-silver
  • low temperature joining technique