Skip to main content
Log in

Reliability of Ag Sinter-Joining Die Attach Under Harsh Thermal Cycling and Power Cycling Tests

  • Electronic Packaging and Interconnections 2021
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silver (Ag) sinter-joining is an ideal connection technique for wide bandgap (WBG) power electronics packaging due to its excellent high-temperature stability and excellent thermal conductivity. In this work, we applied Ag sinter-joining to die attach for a WBG power module and focused reliability of Ag sinter-joining under harsh thermal and power cycling conditions. The die attach structure using a Ag flake paste had an initial shear strength of over 45 MPa due to the excellent sinter-joining ability of the paste. Variation of die attach shear strength and failure mode under a harsh cycling condition (−50~250 °C) have also been systematically discussed. Thermal diffusivity of sintered Ag and thermal resistance of the die attach structure were also measured, showing a superior thermal performance to solder materials. Meanwhile, a simple SiC diode module was assembled via Ag sinter-joining and aluminum (Al) ribbon-bonding for evaluation of Ag sinter-joining reliability during a severe power cycling condition. A power cycling test with a high junction temperature of 200 °C was conducted to evaluate the reliability of Ag sinter-joining. It is found that the main failure of the SiC diode module was located at ribbon-bonding rather than the Ag sinter-joining layer degradation, based on the variation of forward voltage and junction to case thermal resistance. This investigation indicates that the Ag sinter-joining has a long lifetime under a severe operating condition of power electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.P. Chow, R. Tyagi, Wide bandgap compound semiconductors for superior high-voltage power devices, in: [1993] Proceedings of the 5th International Symposium on Power Semiconductor Devices and ICs, IEEE, (1993), p. 84

  2. R. Wu, J. Wen, K. Yu, D. Zhao, A discussion of SiC prospects in next electrical grid, in: 2012 Asia-Pacific Power and Energy Engineering Conference, IEEE, (2012), p. 1

  3. J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, and J. Rebollo, A survey of wide bandgap power semiconductor devices IEEE Trans. Power Electr. 29, 2155 (2013).

    Article  Google Scholar 

  4. H. Niu, A review of power cycle driven fatigue, aging, and failure modes for semiconductor power modules, in: 2017 IEEE International Electric Machines and Drives Conference (IEMDC), IEEE, (2017), p. 1

  5. V.R. Manikam, and K.Y. Cheong, Die attach materials for high temperature applications: a review IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457 (2011).

    Article  CAS  Google Scholar 

  6. F. Yu, R.W. Johnson, and M.C. Hamilton, Pressureless sintering of microscale silver paste for 300°C applications IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1258 (2015).

    Article  CAS  Google Scholar 

  7. E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Metal–metal bonding process using Ag metallo-organic nanoparticles Acta Mater. 53, 2385 (2005).

    Article  CAS  Google Scholar 

  8. K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.-S. Kim, and M. Nogi, Low-temperature low-pressure die attach with hybrid silver particle paste Microelectron. Reliab. 52, 375 (2012).

    Article  CAS  Google Scholar 

  9. T. Morita, Y. Yasuda, E. Ide, and A. Hirose, Direct bonding to aluminum with silver-oxide microparticles Mater. Trans. 50, 226 (2009).

    Article  CAS  Google Scholar 

  10. T. Ogura, S. Takata, M. Takahashi, and A. Hirose, Effects of reducing solvent on copper, nickel, and aluminum joining using silver nanoparticles derived from a silver oxide paste Mater. Trans. 56, 1030 (2015).

    Article  CAS  Google Scholar 

  11. Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. Kim, T. Sugahara, S. Nagao, and K. Suganuma, Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air J. Alloys Compd. 780, 435 (2019).

    Article  CAS  Google Scholar 

  12. C. Chen, Z. Zhang, C. Choe, D. Kim, S. Noh, T. Sugahara, and K. Suganuma, Improvement of the bond strength of Ag sinter-joining on Electroless Ni/Au plated substrate by a one-step preheating treatment J. Electron. Mater. 48, 1106 (2019).

    Article  CAS  Google Scholar 

  13. S. Soichi, and K. Suganuma, Low-temperature and low-pressure die bonding using thin Ag-flake and Ag-particle pastes for power devices IEEE Trans. Compon. Packag. Manuf. Technol. 3, 923 (2013).

    Article  CAS  Google Scholar 

  14. K. Suganuma, S.-J. Kim, and K.-S. Kim, High-temperature lead-free solders: Properties and possibilities JOM 61, 64 (2009).

    Article  CAS  Google Scholar 

  15. H. Ji, M. Li, S. Ma, and M. Li, Ni3Sn4-composed die bonded interface rapidly formed by ultrasonic-assisted soldering of Sn/Ni solder paste for high-temperature power device packaging Mater. Design 108, 590 (2016).

    Article  CAS  Google Scholar 

  16. Y. Yamada, Y. Takaku, Y. Yagi, Y. Nishibe, I. Ohnuma, Y. Sutou, R. Kainuma, and K. Ishida, Pb-free high temperature solders for power device packaging Microelectron. Reliab. 46, 1932 (2006).

    Article  CAS  Google Scholar 

  17. H. Zhang, S. Nagao, and K. Suganuma, Addition of SiC particles to Ag die-attach paste to improve high-temperature stability; grain growth kinetics of sintered porous Ag J. Electron. Mater. 44, 3896 (2015).

    Article  CAS  Google Scholar 

  18. D. Kim, S. Nagao, C. Chen, N. Wakasugi, Y. Yamamoto, A. Suetake, T. Takemasa, T. Sugahara, and K. Suganuma, On-line thermal resistance and reliability characteristic monitoring of power modules with Ag sinter joining and Pb, Pb-free solders during power cycling test by SiC TEG chip IEEE Trans. Power Electron. 36, 4977 (2020).

    Article  Google Scholar 

  19. D. Zhang, Processing of advanced materials using high-energy mechanical milling Prog. Mater Sci. 49, 537 (2004).

    Article  CAS  Google Scholar 

  20. G. Khayati, and K. Janghorban, The nanostructure evolution of Ag powder synthesized by high energy ball milling Adv. Powder Technol. 23, 393 (2012).

    Article  CAS  Google Scholar 

  21. X. Wang, Y. Mei, X. Li, M. Wang, Z. Cui, and G.-Q. Lu, Pressureless sintering of nanosilver paste as die attachment on substrates with ENIG finish for semiconductor applications J. Alloys Compd. 777, 578 (2019).

    Article  CAS  Google Scholar 

  22. J. Li, C.M. Johnson, C. Buttay, W. Sabbah, and S. Azzopardi, Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles J. Mater. Process. Technol. 215, 299 (2015).

    Article  CAS  Google Scholar 

  23. A. Haque, B. Lim, A. Haseeb, H.H. Masjuki, Die attach properties of Zn–Al–Mg–Ga based high-temperature lead-free solder on Cu lead-frame. J. Mater. Sci.: Mater. Electron. 23, 115 (2012).

  24. S. Sakamoto, T. Sugahara, K. Suganuma, Microstructural stability of Ag sinter joining in thermal cycling. J. Mater. Sci.: Mater. Electron. 24, 1332 (2012).

  25. K. Siow, and S. Chua, Thermal Cycling of Sintered Silver (Ag) Joint as Die-Attach Material JOM 71, 3066 (2019).

    Article  CAS  Google Scholar 

  26. I.L. Regalado, J.J. Williams, S. Joshi, E.M. Dede, Y. Liu, and N. Chawla, X-ray microtomography of thermal cycling damage in sintered nano-silver solder joints Adv. Eng. Mater. 21, 1801029 (2019).

    Article  CAS  Google Scholar 

  27. R.M. German, Coarsening in sintering: grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems Crit. Rev. Solid State Mater. Sci. 35, 263 (2010).

    Article  CAS  Google Scholar 

  28. H. Zhang, S. Nagao, K. Suganuma, H.-j. Albrecht, K. Wilke, Thermostable Ag die-attach structure for high-temperature power devices. J. Mater. Sci.: Mater. Electron. 27, 1337 (2016).

  29. D. Kim, C. Chen, S. Noh, S.-J. Lee, Z. Zhang, Y. Kimoto, T. Sugahara, K. Suganuma, Development of high-strength and superior thermal shock-resistant GaN/DBA die attach structure with Ag sinter joining by thick Ni metallization. Microelectron. Reliab. 100, 113380 (2019).

  30. C. Chen, C. Choe, Z. Zhang, D. Kim, K. Suganuma, Low-stress design of bonding structure and its thermal shock performance (− 50 to 250 °C) in SiC/DBC power die-attached modules. J. Mater. Sci.: Mater. Electron. 29, 14335 (2018).

  31. D. Schweitzer, H. Pape, L. Chen, Transient measurement of the junction-to-case thermal resistance using structure functions: chances and limits, in: 2008 Twenty-fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, IEEE, 2008, p. 191.

  32. B. Ji, V. Pickert, W. Cao, and B. Zahawi, In situ diagnostics and prognostics of wire bonding faults in IGBT modules for electric vehicle drives IEEE Trans. Power Electron. 28, 5568 (2013).

    Article  Google Scholar 

  33. T. Hung, S. Chiang, C. Huang, C. Lee, and K. Chiang, Thermal–mechanical behavior of the bonding wire for a power module subjected to the power cycling test Microelectron. Reliab. 51, 1819 (2011).

    Article  Google Scholar 

  34. V. Smet, F. Forest, J.-J. Huselstein, F. Richardeau, Z. Khatir, S. Lefebvre, and M. Berkani, Ageing and failure modes of IGBT modules in high-temperature power cycling IEEE Trans. Ind. Electron. 58, 4931 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This paper is based on results obtained from a project (JPNP14004) commissioned by the New Energy and Industrial Technology Development Organization (NEDO). The author acknowledges the Network Joint Research Centre for Materials and Devices, Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Chen, C., Suetake, A. et al. Reliability of Ag Sinter-Joining Die Attach Under Harsh Thermal Cycling and Power Cycling Tests. J. Electron. Mater. 50, 6597–6606 (2021). https://doi.org/10.1007/s11664-021-09221-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09221-y

Keywords

Navigation