Skip to main content
Log in

Shrinkage and Sintering Behavior of a Low-Temperature Sinterable Nanosilver Die-Attach Paste

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The drying and densification behavior of a nanosilver paste was studied by shrinkage and weight-loss measurements to provide fundamental understanding on the sintering behavior of the nanomaterial for packaging power devices and modules. The measured shrinkage behavior was found to be in good agreement with the weight-loss behavior of the paste as measured by thermogravitational analysis, and the comparison offered direct evidence of ~10% shrinkage contributed by late-stage densification of silver nanoparticles (NPs). It was found that sintered silver joints could be achieved without cracks or delamination under a ramp-soak temperature profile for bonding small-area chips, e.g., 3 mm × 3 mm or smaller. However, for bonding large-area chips, e.g., 5 mm × 5 mm or larger, rapid evaporation of the entrapped organic species caused the chips to delaminate, leading to large longitudinal cracks at the joint interface. Finally, examination of the microstructure evolution of the silver die-attach material revealed that binder molecules inhibited necking of the silver NPs and delayed densification during the sintering process of the nanosilver paste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schwarzbauer, U.S. patent 4,810,672 (March 1989).

  2. H. Schwarzbauer and R. Kuhnert, IEEE Trans. Ind. Appl. 27, 93 (1991).

    Article  Google Scholar 

  3. U. Scheuermann and U. Hecht, PCIM, Nuremberg, PE4.5, 59 (2002).

  4. R. Amro, J. Lutz, J. Rudzki, R. Sittig and M. Thoben, the 18th International Symposium on Power Semiconductor Devices & IC’s, Naples (2006).

  5. P. Beckedahl, PCIM, Nuremberg, 5 (2007).

  6. C. Göbl, P. Beckedahl and H. Braml, Automotive Power Electron., Paris, 1 (2006).

  7. L. Dupont, G. Coquery, K. Kriegel, and A. Melkonyan, Microelectron. Reliab. 49, 1375 (2009).

    Article  CAS  Google Scholar 

  8. U. Scheuermann, Microelectron. Reliab. 49, 1319 (2009).

    Article  CAS  Google Scholar 

  9. L. Feller, S. Hartmann, and D. Schneider, Microelectron. Reliab. 48, 1161 (2008).

    Article  Google Scholar 

  10. C. Göbl and J. Faltenbacher, CIPS, Nurnberg (2010).

  11. T. Licht, R. Speckels and M. Thoben, CIPS, Nurnberg (2010).

  12. J.G. Bai, Z.Z. Zhang, J.N. Calata, and G.-Q. Lu, IEEE Trans. Compon. Packag. Technol. 29, 589 (2006).

    Article  CAS  Google Scholar 

  13. J.G. Bai, T.G. Lei, J.N. Calata, and G.-Q. Lu, J. Mater. Res. 22, 7 (2007).

    Article  Google Scholar 

  14. J.G. Bai and G.-Q. Lu, IEEE Trans. Device Mater. Reliab. 6, 436 (2006).

    Article  CAS  Google Scholar 

  15. T. Wang, X. Chen, Lu. G-Q, and T.G. Lei, J. Electron. Mater. 36, 1333 (2007).

    Article  CAS  Google Scholar 

  16. X. Chen, R. Li, K. Qi, and G.-Q. Lu, J. Electron. Mater. 37, 1574 (2008).

    Article  CAS  Google Scholar 

  17. T.G. Lei, J.N. Calata, Lu. G-Q, X. Chen, and S. Luo, IEEE Trans. Compon. Packag. Technol. 33, 98 (2010).

    Article  CAS  Google Scholar 

  18. T. Wang, T. G. Lei, G-Q. Lu, X. Chen and L. Guido, ICEPT-HDP, Beijing, 581 (2009).

  19. J.N. Calata, T.G. Lei, and G.-Q. Lu, Int. J. Mater. Prod. Technol. 34, 95 (2009).

    Article  CAS  Google Scholar 

  20. A. Sin, B. El Montaser, P. Odier, and F. Weiss, J. Am. Ceram. Soc. 85, 1928 (2002).

    Article  CAS  Google Scholar 

  21. V.V. Srdic, M. Winterer, and H. Hahn, J. Am. Ceram. Soc. 83, 1853 (2000).

    Article  CAS  Google Scholar 

  22. S. Takayuki, H. Naoto, and K. Katsutoshi, Nanotechnology 14, 487 (2003).

    Article  Google Scholar 

  23. S.B. Fuller, E.J. Wilhelm, and J.M. Jacobson, J. Microelectromech. Syst. 11, 54 (2002).

    Article  Google Scholar 

  24. N.B. Bell, C.B. DiAntonio, and D.B. Dimos, J. Mater. Res. 17, 2423 (2002).

    Article  CAS  Google Scholar 

  25. G-Q Lu, G. Lei and J. N. Calata, USPTO Class: 4,273,833 (2009).

  26. J.W. Choe, J.N. Calata, and G.-Q. Lu, J. Mater. Res. 10, 986 (1995).

    Article  CAS  Google Scholar 

  27. L.H. Liang, C.M. Shen, S.X. Du, W.M. Liu, X.C. Xie, and H.J. Gao, Phys. Rev. B 70, 205419 (2004).

    Article  Google Scholar 

  28. C. Huang, M.F. Becker, J.W. Keto, and D. Kovara, J. Appl. Phys. 102, 054308 (2007).

    Article  Google Scholar 

  29. S. Iwama and T. Sahashi, Jpn. J. Appl. Phys. 19, 1039 (1980).

    Article  CAS  Google Scholar 

  30. M. Yeadon, J.C. Yang, R.S. Averback, J.W. Bullard, D.L. Olynick, and J.M. Gibson, Appl. Phys. Lett. 71, 1631 (1997).

    Article  CAS  Google Scholar 

  31. Y.C. Lin and J.H. Jean, J. Am. Ceram. Soc. 87, 187 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Quan Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Zhao, M., Chen, X. et al. Shrinkage and Sintering Behavior of a Low-Temperature Sinterable Nanosilver Die-Attach Paste. J. Electron. Mater. 41, 2543–2552 (2012). https://doi.org/10.1007/s11664-012-2134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2134-2

Keywords

Navigation