Skip to main content
Log in

Contribution of Emulsion Zone in Refining of Basic Oxygen Steelmaking Converter

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The importance of emulsion zone formation in the basic oxygen steelmaking (BOF) process lies in its crucial role in enhancing refining efficiency. This study provides a comprehensive theoretical analysis of refining in BOF steelmaking, empowering steelmakers to optimize emulsion zone formation. By examining the contributions of decarburization, desiliconization, and dephosphorization from the emulsion zone, the study systematically investigates refining phenomena in distinct sections of the BOF converter, interconnected through recirculation streams. By utilizing FactSageTM and its macro-facilities, transient variations in metal and slag compositions, alongside varying terminal phosphorus levels for diverse emulsion zone dimensions, are quantified. Model findings highlight that emulsion and hotspot zones play roles in decarburization and desiliconization, while dephosphorization exclusively occurs within the emulsion zone. The model’s projections for carbon, silicon, and phosphorus removals (wt pct) and metal bath temperature concur with data obtained from plant trials. This comprehensive analysis enhances our understanding of the BOF steelmaking process, enabling steelmakers to fabricate the required emulsion zone strategically for optimal refining efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Ogasawara, Y. Miki, Y. Uchida, and N. Kikuchi: ISIJ Int., 2013, vol. 53, pp. 1786–93.

    Article  CAS  Google Scholar 

  2. F. Pahlevani, S.Y. Kitamura, H. Shibata, and N. Maruoka: ISIJ Int., 2010, vol. 50, pp. 822–29.

    Article  CAS  Google Scholar 

  3. X.R. Wu, P. Wang, L.S. Li, Z.J. Wu, and R.H. Chen: Ironmak. Steelmak., 2011, vol. 38, pp. 185–88.

    Article  CAS  Google Scholar 

  4. S. Barui, S. Mukherjee, A. Srivastava, and K. Chattopadhyay: Metals, 2019, vol. 9, pp. 1–8.

    Article  Google Scholar 

  5. M. Iwasaki and M. Matsuo: Nippon Steel Tech. Rep., 2011, vol. 391, pp. 88–93.

    Google Scholar 

  6. M. Kumakura: Nippon Steel Tech. Rep., 2012, vol. 394, pp. 4–11.

    Google Scholar 

  7. M. Iwasaki and M. Matsuo: Nippon Steel Tech. Rep., 2012, vol. 394, pp. 26–32.

    Google Scholar 

  8. T. Hashimoto, H. Iiboshi, and K. Kumar: Nippon Steel Tech. Rep., 2012, vol. 394, pp. 84–90.

    Google Scholar 

  9. M. Kobayashi, K. Isobe, and M. Arai: Nippon Steel Tech. Rep., 2012, vol. 394, pp. 119–24.

    Google Scholar 

  10. X.M. Yang, J.Y. Li, G.M. Chai, D.P. Duan, and J. Zhang: Ironmak. Steelmak., 2017, vol. 44, p. 437.

    Article  CAS  Google Scholar 

  11. X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, and J.A. Zhang: Met. Mater. Trans. B., 2011, vol. 42, pp. 951–76.

    Article  CAS  Google Scholar 

  12. F. He and L. Zhang: J. Process. Control., 2018, vol. 66, pp. 51–58.

    Article  CAS  Google Scholar 

  13. H. Sun, J. Yang, W. Yang, and R. Zhang: Steel Res. int., 2023, vol. 94, pp. 1–21.

    Google Scholar 

  14. E. Turkdogan and J. Pearson: ISIJ, 1953, vol. 175, pp. 398–401.

    CAS  Google Scholar 

  15. E. Turkdogan and J. Pearson: J. Iron Steel Inst., 1954, vol. 176, pp. 59–63.

    CAS  Google Scholar 

  16. G. Chen and S. He: Ironmak. Steelmak., 2015, vol. 42, pp. 433–38.

    Article  CAS  Google Scholar 

  17. T. Ikeda and T. Matsuo: Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 495–503.

    Article  CAS  Google Scholar 

  18. G. Ye, J. Yang, and Rh. Zhang: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 66–75.

    Article  CAS  Google Scholar 

  19. X. Yang, F.M. Sun, J.L. Yang, F. Liu, F.K.S. Cheng, and J.H. Wang: J. Iron. Steel Res. Int., 2013, vol. 20, p. 41.

    Article  Google Scholar 

  20. B. Deo and R. Boom: Fundamentals of Steel Making Metallurgy, Prentice Hall International, Upper Saddle River, 1993.

    Google Scholar 

  21. K.S Coley, E.Chen, and M. Pomeroy: in: Proceedings of the Extraction and Processing Division Symposium on Pyrometallurgy, San Diego, 16–20 June 2014, p. 289

  22. E. Chen and K.S. Coley: Ironmak. Steelmak., 2010, vol. 37, pp. 541–45.

    Article  CAS  Google Scholar 

  23. K. Gu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2343–53.

    Article  CAS  Google Scholar 

  24. K. Gu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1119–35.

    Article  CAS  Google Scholar 

  25. Z. Tian, B. Li, X. Zhang, and Z. Jiang: J. Iron. Steel Res. Int., 2009, vol. 16, pp. 6–14.

    Article  CAS  Google Scholar 

  26. W. Wu, S. Dai, and Y. Liu: J. Iron. Steel Res. Int., 2017, vol. 24, pp. 908–15.

    Article  Google Scholar 

  27. A. Basu, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 357–66.

    Article  CAS  Google Scholar 

  28. A.N. Assis, M. Tayeb, S. Sridhar, and R.J. Fruehan: Metals, 2019, vol. 9, pp. 1–2.

    Article  Google Scholar 

  29. Y. Zhou, R. Zhu, H. Wang, and H. Zhang: Ironmak. Steelmak., 2021, vol. 48, pp. 570–78.

    Article  CAS  Google Scholar 

  30. P. Kozakevitch: Study of Basic Phosphate Slag Foams, International Congress of Oxygen Steelmaking, Le Touquet, 1963.

    Google Scholar 

  31. H.W. Meyer, W.F. Porter, G.C. Smith, and J. Szekely: JOM, 1968, vol. 20, pp. 35–42.

    Article  CAS  Google Scholar 

  32. S. Okano, J. Matsuno, H. Ooi, K. Tsuruoka, T. Koshikawa, and A. Okazaki: International Conference on Science and Technology of Iron and Steel, Iron and Steel Institute, Tokyo, 1971, pp. 227–31.

    Google Scholar 

  33. D.J. Price: Process Engineering of Pyrometallurgy Symposium, IMM, London, 1974.

    Google Scholar 

  34. A. Chatterjee, N.O. Lindfors, and J.A. Weste: Ironmak. Steelmak., 1976, vol. 3, pp. 21–32.

    CAS  Google Scholar 

  35. B.K Rout, G.A Brooks, M.A. Rhamdhani, in: Proceedings of the AISTech 2015 Iron and Steel Technology Conference, Cleveland, 4–7 May 2015; vol. 3, pp. 3225–37.

  36. B.K. Rout, G.A. Brooks, M.A. Rhamdhani, Z. Li, F.N.H. Schrama, and A. Overbosch: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1022–1033.

    Article  CAS  Google Scholar 

  37. N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1102–1109.

    Article  CAS  Google Scholar 

  38. N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1093–1101.

    Article  CAS  Google Scholar 

  39. P. Singha and A.K. Shukla: Metals, 2022, vol. 12, pp. 1–7.

    Article  Google Scholar 

  40. D.G.C. Robertson, B. Deo, and S. Ohguchi: Ironmak. Steelmak., 1984, vol. 11, pp. 41–56.

    CAS  Google Scholar 

  41. FactSage: Center for Research in Chemical Thermodynamics, Polytechnique de Montreal, Canada. Available online: www. factsage.com (accessed on 1 Feb 2023).

  42. FactSage Documentation: version 7.3, 2021.

  43. K.J. Graham and G.A. Irons: Iron Steel Technol, 2009, vol. 6, pp. 164–73.

    CAS  Google Scholar 

  44. P. Singha: Ironmak. Steelmak., 2023, vol. 22, pp. 884–93.

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank JSW Steel Ltd., India, for providing the plant data used to validate the models developed in this work.

Funding

No funding is available for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Singha.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singha, P. Contribution of Emulsion Zone in Refining of Basic Oxygen Steelmaking Converter. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03117-y

Navigation