Skip to main content
Log in

Refining Contribution at Hotspot and Emulsion Zones of Argon Oxygen Decarburization: Fundamental Analysis Based upon the FactSage-Macro Program Approach

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Examining the kinetics involved in the Argon Oxygen Decarburization (AOD) process, especially in the hotspot and emulsion zones within distinct reactors, can offer a deeper understanding of the refining mechanism in stainless-steelmaking. A predictive dynamic model has been formulated to estimate the effects of different refining processes, encompassing decarburization, desiliconization, demanganization, and chromium removal. The model includes a sub-model for heat loss calculation. The FactSageâ„¢ software, along with its macro programming capability, was utilized to incorporate thermochemical and kinetic information into the model. The model forecasts that the predominant chromium removal occurs within the hotspot zone, while carbon, silicon, and manganese removals occur in both the hotspot and emulsion zones. The predictions regarding the transient compositions of steel and slag, as well as the temperature of the steel bath, align with the plant data (Average of five heats), showcasing consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figu. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. https://www.worldstainless.org. Accessed 17 June 2023.

  2. M. Ersson and A. Tilliander: Steel Res. Int., 2018, vol. 89, p. 1700108.

    Article  Google Scholar 

  3. S. Chanouian, B. Ahlin, A. Tilliander, and M. Ersson: Steel Res. Int., 2022, vol. 93, pp. 1–11.

    Article  Google Scholar 

  4. T. Ohno and T. Nishida: Tetsu-to Hagane, 1977, vol. 63, pp. 2094–99.

    Article  CAS  Google Scholar 

  5. S. Asai and J. Szekely: Metall. Trans, 1974, vol. 5, pp. 651–57.

    Article  CAS  Google Scholar 

  6. J. Szekely and S. Asai: Metall. Trans, 1974, vol. 5, pp. 1573–80.

    Article  Google Scholar 

  7. V.V. Visuri, M. Jarvinen, P. Sulasalmi, E.P. Heikkinen, J. Savolainen, and T. Fabritius: ISIJ Int., 2013, vol. 53, pp. 603–12.

    Article  CAS  Google Scholar 

  8. V.V. Visuri, M. Jarvinen, P. Sulasalmi, E.P. Heikkinen, J. Savolainen, and T. Fabritius: ISIJ Int., 2013, vol. 53, pp. 613–21.

    Article  CAS  Google Scholar 

  9. V.V Visuri, R Mattila, P Kupari, T.A Fabritius, Comparative study on refractory wear associated with fluxes for AOD slags. In Proceedings of the 7th International Congress on Science and Technology of Steelmaking, Venice 13–15 June 2018.

  10. Y. Kang, Y.H. Kim, and H.-S. Sohn: Met. Mater. Int., 2015, vol. 21, pp. 118–25.

    Article  CAS  Google Scholar 

  11. K. Ashok, P. Sankar, and K. Maruthupandian: J. Metall. Mater. Sci., 2017, vol. 59, pp. 173–80.

    CAS  Google Scholar 

  12. R. Fruehan: Ironmak. Steelmak., 1976, vol. 3, pp. 153–58.

    CAS  Google Scholar 

  13. K. Miyamoto, K. Kato, and T. Yuki: Tetsu -to- Hagane, 2002, vol. 88, pp. 838–44.

    Article  CAS  Google Scholar 

  14. S. Yokoyama, M. Takeda, K. Ito, and M. Kawakami: Tetsu-to Hagane, 1992, vol. 78, pp. 223–30.

    Article  CAS  Google Scholar 

  15. T. Nakasuga, K. Nakashima, and K. Mori: ISIJ Int., 2004, vol. 44, pp. 665–72.

    Article  CAS  Google Scholar 

  16. T. Nakasuga, H. Sun, K. Nakashima, and K. Mori: ISIJ Int., 2001, vol. 41, pp. 937–44.

    Article  CAS  Google Scholar 

  17. T. Nakasuga, H. Sun, K. Nakashima and K. Mori: Proceeding of the 2nd International Conference on processing materials for properties, vol. 86, TMS, Warrendale, PA, 2000, pp. 553.

  18. E. Shibata, S. Egawa, and T. Nakamura: ISIJ Int., 2002, vol. 42, pp. 609–13.

    Article  CAS  Google Scholar 

  19. K. Taoka, M. Tada, H. Nomura, and H. Baba: Tetsu-to-Hagane, 1990, vol. 76, pp. 1863–870.

    Article  CAS  Google Scholar 

  20. M. Jarvinen, S. Pisila, A. Karna, T. Fabritius, T. Ikaheimonen, and P. Kupari: Steel Res. Int., 2011, vol. 82, pp. 638–49.

    Article  CAS  Google Scholar 

  21. M. Jarvinen, S. Pisila, A. Karna, T. Fabritius, T. Ikaheimonen, and P. Kupari: Steel Res. Int., 2011, vol. 82, pp. 650–57.

    Article  Google Scholar 

  22. J.-H. Wei and D.-P. Zhu: Metall. Mater. Trans. B, 2002, vol. 33, pp. 111–19.

    Article  Google Scholar 

  23. J.H. Wei and D.P. Zhu: Metall. Mater. Trans. B, 2002, vol. 33, pp. 121–27.

    Article  Google Scholar 

  24. M. Gornerup and P. Sjoberg: Ironmak. Steelmak., 1999, vol. 26, pp. 58–63.

    CAS  Google Scholar 

  25. Wei Chi-ho and A. Mitchell, Application of mathematical and physical models in the iron and steel industry, In Proceeding 3rd Process Technology Conference, March 28–31, 1982, ISS, Pittsburgh, PA, vol. 3, pp. 232–254.

  26. A. Mitchell, F.R. Carmona, and C. Wei: Iron Steelmak, 1982, vol. 3, pp. 37–41.

    Google Scholar 

  27. J. Wei and A. Mitchell: Chin. J. Met. Sci. Technol., 1986, vol. 2, pp. 11–23.

    Google Scholar 

  28. J. Wei and A. Mitchell: Acta Metall. Sin., 1989, vol. 23, pp. 126–34.

    Google Scholar 

  29. W. Jihe: Chin. J. Met. Sci. Technol., 1989, vol. 5, pp. 32–46.

    Google Scholar 

  30. E. Shibata, H. Sun, and K. Mori: Metall. Mater. Trans. B, 1999, vol. 30, pp. 279–86.

    Article  Google Scholar 

  31. M. Gornerup and A.K. Lahiri: Ironmak. Steelmak., 1998, vol. 25, pp. 317–22.

    CAS  Google Scholar 

  32. B. Deo and S. Kumar: Adv Mat Res, 2013, vol. 794, pp. 50–62.

    Google Scholar 

  33. J. Riipi, T. Fabritius, E.-P. Heikkinen, P. Kupari, and A. Karna: ISIJ Int., 2009, vol. 49, pp. 1468–476.

    Article  CAS  Google Scholar 

  34. E.P. Heikkinen, V.V. Visuri and T. Fabritius, Proceeding of the 8th European Oxygen Steelmaking Conference, Associazione Italiana di Metallurgia, Taranto 2018.

  35. P. Ternstedt, G. Runnsjo, A. Tilliander, J. Janis, N.A.I. Andersson, and P.G. Jonsson: Metals, 2020, vol. 10, p. 308.

    Article  CAS  Google Scholar 

  36. E.P. Heikkinen, T.M.J. Fabritius, T.M.T. Kokkonen, and J.J. Harkki: Steel Res. Int., 2004, vol. 75, pp. 800–806.

    Article  CAS  Google Scholar 

  37. P. Ternstedt, R. Gyllenram, J. Bengtsson and P.G. Jonsson, Proceeding of the 4th International Conference on Modelling and Simulation of Metallurgical Processes in Steelmaking, Stahlinstitut VDEh, Düsseldorf 2011.

  38. E. Wimmer, D. Kahrimanovic, K. Pastucha, B. Voraberger, and G. Wimmer: Berg Huettenmaenn Monatsh, 2020, vol. 165, pp. 3–10.

    Article  Google Scholar 

  39. H.J. Odenthal, U. Thiedemann, U. Falkenreck, and J. Schlueter: Metall. Trans. B, 2010, vol. 41B, pp. 396–413.

    Article  CAS  Google Scholar 

  40. C. Wuppermann, N. Giesselmann, A. Ruckert, H. Pfeifer, H.J. Odenthal, and E. Hovestadt: ISIJ Int., 2012, vol. 52, pp. 1817–823.

    Article  CAS  Google Scholar 

  41. C. Wuppermann, A. Ruckert, H. Pfeifer, and H.J. Odenthal: ISIJ Int., 2013, vol. 53, pp. 441–49.

    Article  CAS  Google Scholar 

  42. W. Wei, J. Gustavsson, P.B. Samuelsson, R. Gyllenram, A. Tilliander, and P.G. Jonsson: Ironmak. Steelmak., 2022, vol. 49, pp. 70–82.

    Article  CAS  Google Scholar 

  43. A. Illiander, L.T.I. Jonsson, and P.G. Jonsson: Steel Res. Int., 2014, vol. 85, pp. 376–87.

    Article  Google Scholar 

  44. P. Amuelsson, P. Ternstedt, A. Tilliander, A. Appell, and P.G. Jonsson: Ironmak. Steelmak., 2017, vol. 45, pp. 1–7.

    Google Scholar 

  45. S. Patra, J. Nayak, L.K. Singhal, and S. Pal: Steel Res. Int., 2017, vol. 88, p. 1600271.

    Article  Google Scholar 

  46. P. Ternstedt, P. Ni, N. Lundqvist, A. Tilliander, and P.G. Jonsson: Ironmak. Steelmak., 2018, vol. 45, pp. 944–50.

    Article  CAS  Google Scholar 

  47. E.P. Heikkinen, V.V Visuri, T. Fabritius, In Proceedings of the 8th European Oxygen Steelmaking Conference, Taranto 10–12 October 2018.

  48. A. Rafiei, G.A. Irons, and K.S. Coley: Metall. Mater. Trans. B, 2021, vol. 52, pp. 2509–25.

    Article  CAS  Google Scholar 

  49. P. Mason, A.N. Grundy, R. Rettig, L. Kjellqvist, J. Jeppsson, J. Bratberg, 11th In International Symposium on High-Temperature Metallurgical Processing. The Minerals, Metals & Materials Series. Springer, Cham. 2020.

  50. A.N. Grundy, M. Powell, R. Rettig, L. Kjellqvist, J. Jeppsson, A. Jansson, J. Bratberg, A Kinetic and Thermodynamic Description of the Steel Making Process using Thermo-Calc and the CALPHAD Database TCOX. https://thermocalc.com/products/add-on-modules/process-metallurgy-module/. Accessed 1 October 2023.

  51. www.factsage.com. Accessed 10 August 2022.

  52. P. Singha and A.K. Shukla: Metals, 2022, vol. 12, p. 638.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to express gratitude to J Mohon Rao fQ2or providing valuable comments on the AOD plant.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Singha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Initial, A = B = C = 1

$$\alpha ={\text{A}} {\left(\frac{{E}_{{\text{total}}}^{{\text{O}}}}{8000}\right)}^{0.5}$$
(A1)
$${\beta =\text{ B}\left(\frac{{E}_{{\text{total}}}^{{\text{O}}}}{8000}\right)}^{0.5}$$
(A2)
$${\delta =\text{ C}\left(\frac{{E}_{{\text{total}}}^{{\text{O}}}}{8000}\right)}^{0.5}$$
(A3)

Now model was run according to Figure 2, corresponding to the input parameters outlined in Table I.

The convergence criteria obtained from plant trials are applied both before and at the end of the reduction stage of the process

Now, to meet converge criteria A, B, and C values changes

Best fitted with plant data when A = 0.09, B = 0.3, and C = 0.6 only. I.e., we finally got the Eqs. [24–26]

Appendix 2

Heat Loss Model

The heat of dissolution of C, Si, Mn, Cr, and Ni is 2.11, − 4.67, 0, 0.40, and 0 KJ/kg

The specific heat of Fe, C, Si, Mn, and Cr is 0.945, 2.278,3.064,1.258, and 1.687 KJ/kg

The heat of the formation (1600 °C) of SiO2, MnO, Cr2O3 and FeO are 37.5, 7.1, 11.6 and 6.05 MJ/kg

The sensible heat of steel, CO, CO2, and slag is 1.413, 1.86. 1.86 and 2.915 MJ/kg

Heat of formation of CaO–SiO2 is 4.5 MJ/kg of Si

$$ \begin{aligned} {\text{Heat input}} = & {\text{Sensible heat of hot metal + heat of reaction }} \\ & ={\text{ enthalpy of hot metal + decarburization + heat of combustion of CO gas to C}}{{\text{O}}_{2}} \\ &+{\text{oxidation of silicon, manganese, and chromium + formation of FeO }} \\ & + {\text{formation of CaO}}{\text{.Si}}{{\text{O}}_{2}} \\ \end{aligned} $$
(A4)
$$ \begin{aligned} {\text{Heat output = }} & {\text{ enthalpy of steel + enthalpy of CO gas }} \\ & \,{\text{ + enthalpy of C}}{{\text{O}}_{2}}{\text{gas + enthalpy of slag}} \\ \end{aligned} $$
(A5)

By solving the above two Eqs. [A4] and [A5], we get heat input = 2207.3 MJ and heat output = 1891.7 MJ.

Therefore, heat losses = 315.6 MJ/THM

Total heat losses of the system = 142 × 227.89 = 44815.2 MJ

Heat loss per time step of process = 1120.38 MJ

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singha, P. Refining Contribution at Hotspot and Emulsion Zones of Argon Oxygen Decarburization: Fundamental Analysis Based upon the FactSage-Macro Program Approach. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03084-4

Navigation