Skip to main content
Log in

Distinct Mechanisms for Channel Segregation in Ultra-Heavy Advanced Steel Ingots via Numerical Simulation and Experimental Characterization

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Channel segregation is one of the most common defects in solidifying steel, particularly in ultra-heavy advanced steel ingots, and it has a significant effect on the mechanical properties of the final products. However, the formation mechanism remains unclear. Here, based on numerical simulations and experimental characterization of 100-ton ultra-heavy 30Cr2Ni4MoV steel ingots used in nuclear power plants, it is strikingly found that channel segregations in the top riser and body are caused by two distinct mechanisms, natural convection and inclusion flotation, respectively. The flow instability and mush deformation in the riser originates from the complex geometry and heat transport. However, the onset of channel segregation in the ingot body stems from perturbation by inclusion flotation. Quantitatively, the initiation criterion of the modified Rayleigh number, including the inclusion effect and its critical value of 30, is proposed for the first time. In addition, it is proven that reducing the number of inclusions prevents channel segregation and improves the entire compositional homogeneity. This study highlights a novel idea by jointly controlling impurities and optimizing hot-top design to produce homogenized ultra-heavy steel ingots in key areas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C l,C s , C Mix :

Liquid, solid, and mixture concentrations (wt pct)

H s,H L , H Mix :

Solid, liquid, and mixture enthalpies (J kg1)

ΔH :

Latent heat (J kg1)

C * :

Reference concentration (wt pct)

T * :

Reference temperature (K)

u p :

vp, Particle velocity components in x and y directions (m s1)

u, :

v, Liquid velocity components in x and y directions (m s1)

\(\overline{{u_{p} }}\), \(\overline{{v_{p} }}\) :

Average particle velocities in x and y directions (m s1)

f s,f l :

Fractions of solid and liquid

\(\overrightarrow {U}\) :

Superficial velocity (m s1)

m :

Liquidus slope (K wt pct1)

λ :

Heat conductivity (W m1 K1)

c p :

Specific heat (J kg1 K1)

μ :

Liquid dynamic viscosity (pa s)

\(\overrightarrow {g}\) :

Acceleration of gravity (m s2)

t :

Time (s)

K :

Permeability coefficient (m2)

Ra :

Rayleigh number

T l,T m :

Liquidus of steel and melting point of solvent (K)

d s :

Secondary dendritic arm spacing (μm)

k :

Partition coefficient

P :

Pressure (pa)

β T :

Thermal expansion coefficient (K1)

β C :

Compositional expansion coefficient (wt pct1)

ρρ p :

Densities of steel and inclusion (kg m3)

R :

Solidification rate (m s1)

s, l, mix :

Solid phase, liquid phase, mixture

p :

Inclusion particle

i :

The ith

j :

The jth

s,l, pl :

Interaction between liquid and solid or inclusion

T :

Temperature effect

C :

Compositional effect

References

  1. M.C. Flemings: J. Cryst. Growth, 2020, vol. 530, 125246.

    Article  CAS  Google Scholar 

  2. M.C. Flemings: ISIJ Int., 2000, vol. 40, pp. 833–41.

    Article  CAS  Google Scholar 

  3. C. Beckermann: Int. Mater. Rev., 2002, vol. 47, pp. 243–61.

    Article  CAS  Google Scholar 

  4. G. Lesoult: Mater. Sci. Eng. A, 2005, vol. 413–414, pp. 19–29.

    Article  Google Scholar 

  5. E.J. Pickering: ISIJ Int., 2013, vol. 53, pp. 935–49.

    Article  CAS  Google Scholar 

  6. M.C. Schneider and C. Beckerman: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2373–88.

    Article  CAS  Google Scholar 

  7. M. Wu and A. Ludwig: Acta Mater., 2009, vol. 57, pp. 5621–31.

    Article  CAS  Google Scholar 

  8. H. Combeau, M. Zaloznik, S. Hans, and P. Richy: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 289–304.

    Article  CAS  Google Scholar 

  9. J. Li, M. Wu, A. Ludwig, and A. Kharicha: Int. J. Heat Mass Transf., 2014, vol. 72, pp. 668–79.

    Article  CAS  Google Scholar 

  10. C.Y. Wang and C. Beckerman: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2754–64.

    Article  CAS  Google Scholar 

  11. S. Karagadde, L. Yuan, N. Shevchenko, S. Eckert, and P.D. Lee: Acta Mater., 2014, vol. 79, pp. 168–80.

    Article  CAS  Google Scholar 

  12. L. Yuan and P.D. Lee: Acta Mater., 2012, vol. 60, pp. 4917–26.

    Article  CAS  Google Scholar 

  13. G. Guillemot, C.-A. Gandin, and M. Bellet: J. Cryst. Growth, 2007, vol. 303, pp. 58–68.

    Article  CAS  Google Scholar 

  14. J.P. Gu and C. Beckerman: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1357–66.

    Article  CAS  Google Scholar 

  15. W.S. Li, H.F. Shen, X. Zhang, and B.C. Liu: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 464–71.

    Article  Google Scholar 

  16. M. Wu and A. Ludwig: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1613–31.

    Article  CAS  Google Scholar 

  17. W.T. Tu, H.F. Shen, and B.C. Liu: ISIJ Int., 2014, vol. 54, pp. 351–55.

    Article  CAS  Google Scholar 

  18. D.Z. Li, X.Q. Chen, P.X. Fu, X.P. Ma, H.W. Liu, Y. Chen, Y.F. Cao, Y.K. Luan, and Y.Y. Li: Nat. Commun., 2014, vol. 5, p. 5572.

    Article  CAS  Google Scholar 

  19. Y.F. Cao, Y. Chen, and D.Z. Li: Acta Mater., 2016, vol. 107, pp. 325–36.

    Article  CAS  Google Scholar 

  20. E.J. Pickering, C. Chesman, S. Al-Bermani, M. Holland, P. Davies, and J. Talamantes-Silva: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1860–74.

    Article  Google Scholar 

  21. E.J. Pickering and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2983–97.

    Article  Google Scholar 

  22. H.H. Ge, F.L. Ren, J. Li, Q.D. Hu, M.X. Xia, and J.G. Li: J. Mater. Process. Technol., 2018, vol. 252, pp. 362–36.

    Article  CAS  Google Scholar 

  23. Z.Y. Chen, D. Senk, and F. Firsbach: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2514–32.

    Article  Google Scholar 

  24. Y.F. Cao, Y. Chen, D.Z. Li, H.W. Liu, and P.X. Fu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2927–39.

    Article  Google Scholar 

  25. H. Shibata, D.R. Poirier, and T. Emi: ISIJ Int., 1998, vol. 38, pp. 339–47.

    Article  CAS  Google Scholar 

  26. J. Miettinen, S. Louhenkilpi, H. Kytonen, and J. Laine: Math. Comput. Simul., 2010, vol. 80, pp. 1536–50.

    Article  Google Scholar 

  27. ProCAST v14, ESI Group, Paris, France.

  28. S.W. Qian, X.Q. Hu, Y.F. Cao, P.X. Fu, X.H. Kang, and D.Z. Li: Mater. Des., 2015, vol. 87, pp. 205–14.

    Article  CAS  Google Scholar 

  29. J. Li, M. Wu, J. Hao, A. Kharicha, and A. Ludwig: Comput. Mater. Sci., 2012, vol. 55, pp. 419–29.

    Article  CAS  Google Scholar 

  30. T. Sawada, K. Oikawa, and K. Anzai: Tetsu-to-Hagane, 2013, vol. 12, pp. 135–40.

    Article  Google Scholar 

  31. P. Auburtin, T. Wang, S.L. Cockcroft, and A. Mitchell: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 801–11.

    Article  CAS  Google Scholar 

  32. J.C. Ramirez and C. Beckermann: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1525–36.

    Article  CAS  Google Scholar 

  33. J. Valdes, P. King, and X. Liu: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2408–16.

    Article  CAS  Google Scholar 

  34. M. Torabi Rad, P. Kotas, and C. Beckermann: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4266–81.

    Google Scholar 

  35. E.J. Pickering, S.S. Al-Bermani, and J. Talamantes-Silva: Mater. Sci. Technol., 2015, vol. 31, pp. 1313–19.

    Article  CAS  Google Scholar 

  36. Y.F. Cao, Y. Chen, P.X. Fu, H.W. Liu, and D.Z. Li: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2260–73.

    Article  Google Scholar 

  37. A.C. Wang, Y.Y. Li, C.G. Fan, K. Yang, D.F. Li, X. Zhao, and C.X. Shi: Scripta Metall. Mater., 1994, vol. 31, pp. 1695–1700.

    Article  CAS  Google Scholar 

  38. S.N. Geng, P. Jiang, X.Y. Shao, G.Y. Mi, H. Wu, Y.W. Ai, C.M. Wang, C. Han, R. Chen, W. Liu, and Y.H. Zhang: Acta Mater., 2018, vol. 160, pp. 85–96.

    Article  CAS  Google Scholar 

  39. J.F. Nie, K. Oh-ishi, X. Gao, and K. Hono: Acta Mater., 2008, vol. 56, pp. 6061–76.

    Article  CAS  Google Scholar 

  40. H. Hayakawa, N. Fukada, T. Udagawa, M. Koizumi, H.G. Suzuki, and T. Fukuyama: ISIJ Int., 1991, vol. 31, pp. 775–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (Grant No. 52031013), the National Key Research and Development Program (Grant No. 2018YFA0702900), and the Project to Strengthen Industrial Development at the Grass-roots Level (Grant No. TC190A4DA/35).

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianzhong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Liu, H., Fu, P. et al. Distinct Mechanisms for Channel Segregation in Ultra-Heavy Advanced Steel Ingots via Numerical Simulation and Experimental Characterization. Metall Mater Trans B 54, 2771–2783 (2023). https://doi.org/10.1007/s11663-023-02873-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02873-7

Navigation