Skip to main content
Log in

On the Formulation of a Freckling Criterion for Ni-Based Superalloy Vacuum Arc Remelting Ingots

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A criterion for freckling prediction that includes the effect of a tilted solidification front was proposed and evaluated with experimental data available in the literature. The criterion is based on the maximum local Rayleigh number in the mush layer and was developed using Flemings’ criterion and assuming that the interdendritic liquid flow is governed by the Darcy law. The proposed form preserves the anisotropic nature of the permeability tensor throughout the derivation and provides improved resolution on freckle prediction. A clear separation between the freckled and nonfreckled experiments was obtained for all compositions. The effect of the tilted solidification front over the freckling potential was corroborated, and the results suggested that the directionality of permeability affects the location within the mush layer of the potential nucleation sites for the channels leading to freckles. A threshold zone was determined from the enclosing experiments data, and the range contained one of the proposed critical values for superalloys, which previously was developed by a completely different method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T.M. Pollock and W.H. Murphy: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1081-94.

    Article  ADS  Google Scholar 

  2. R. Schwant, S. Thamboo, L. Yang, and M. Morra: Superalloys 718, 625, 706 and Derivatives 2005, Ed. E.A. Loria, TMS, Warrendale, PA, 2005, pp. 15-24.

    Google Scholar 

  3. X. Wang, R.M. Ward, M.H. Jacobs, and M.D. Barrat: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2981-89.

    Article  CAS  ADS  Google Scholar 

  4. R.C. Reed, T. Tao, and N. Warnken: Acta Mater., 2009, vol 57, pp. 5898-5913.

    Article  CAS  Google Scholar 

  5. S.M. Copley, A.F. Giamei, S.M. Johnson, and M.F. Hornbecker: Metall. Trans., 1970, vol. 1, pp. 2193-2204.

    Article  CAS  Google Scholar 

  6. D.G. Nielson and F.P. Incropera: Int. J. Heat Mass Transfer, 1991, vol. 34, pp. 1717-32.

    Article  Google Scholar 

  7. P.D. Genereux and C.A. Borg: Superalloys 2000, Eds. K.A. Green, T.M. Pollock, and R.D. Kissinger, TMS, Warrendale, PA, 2000, pp. 19-27.

    Google Scholar 

  8. S. Tait and C. Jaupart: J. Geophys. Res., 1992, vol. 97, pp. 6735-56.

    Article  CAS  ADS  Google Scholar 

  9. A.K. Sample and A. Hellawell: Metall. Trans. A, 1984, vol. 15A, pp. 2163-73.

    CAS  ADS  Google Scholar 

  10. D.G. Nielson and F.P Incropera: Int. J. Heat Mass Transfer, 1993, vol. 36, pp. 489-505.

    Article  Google Scholar 

  11. D.G. Nielson and F.P. Incropera: Exp. Heat Transfer, 1993, vol. 6, pp. 131-55.

    Google Scholar 

  12. C. Frueh, D.R. Poirier, R.G. Erdmann, and S.D. Felicelli: Mater. Sci. Eng. A, 2003, vol. 345, pp. 72-80.

    Article  Google Scholar 

  13. M.C. Schneider and C. Beckermann: Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 3455-73.

    Article  CAS  Google Scholar 

  14. M.G. Worster: J. Fluid Mech., 1992, vol. 237, pp. 649-69.

    Article  MATH  CAS  ADS  Google Scholar 

  15. P.W. Emms: J. Eng. Math., 1998, vol. 33, pp. 175-200.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Tait, K. Jahrling, and C. Jaupart: Nature, 1992, vol. 359, pp. 406-08.

    Article  CAS  ADS  Google Scholar 

  17. A. Mitchell: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 10-18.

    Google Scholar 

  18. I.G. Hwang and C.K. Choi: Korean J. Chem. Eng., 2008, vol. 25, pp. 199-202.

    Article  CAS  Google Scholar 

  19. J.H. Van Den Avyle, J.A. Brooks, and A.C. Powell: JOM, 1998, vol. 50, no. 3, pp. 22-5.

    Article  Google Scholar 

  20. P. Auburtin, S.L. Cockcroft, A. Mitchell, and A.J. Schmalz: Superalloys 718,625, 706 and Various Derivatives, Ed. E.A. Loria, TMS, Warrendale, PA, 1997, pp. 47-54.

    Google Scholar 

  21. P. Auburtin, S.L. Cockcroft, and A. Mitchell: Superalloys 1996, Eds., R.D. Kissinger, D.J. Deye, D.L. Anton, and A.D. Cetel, TMS, Warrendale, PA, 1996, pp. 443-50.

    Google Scholar 

  22. A.D. Patel, R.S. Minisandram, and D.G. Evans: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, pp. 917–24.

  23. D. Zagrebelnyy and M.J.M. Krane: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 281-88.

    Article  CAS  ADS  Google Scholar 

  24. L. Yuan, P.D. Lee, G. Djambazov, and K. Pericleous: Int. Symp. on Liquid Metal Processing and Casting, Eds. P. Lee, A. Mitchell, and R. Williams, TMS, Warrendale, PA, 2009, pp. 39-46.

    Google Scholar 

  25. W.H. Yang, J.J. deBarbadillo, K. Morita, T. Suzuki, W. Chen, and K.M. Chang: JOM, 2004, vol. 56, no. 9, pp. 56-61.

    Article  CAS  Google Scholar 

  26. K. Kajikawa, T. Sato, and H. Yamada: Int. Symp. on Liquid Metal Processing and Casting, Eds. P. Lee, A. Mitchell, and R. Williams, TMS, Warrendale, PA, 2009, pp. 327-35.

    Google Scholar 

  27. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi: Acta Mater., 2009, vol. 57, pp. 941-71.

    Article  CAS  Google Scholar 

  28. S.N. Tewari and R. Tiwari: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2365-76.

    Article  CAS  Google Scholar 

  29. P. Auburtin, T. Wang, S.L. Cockcroft, and A. Mitchell: Metall. Mater. Trans. B, 2000, vol.31B, pp. 801-11.

    Article  CAS  Google Scholar 

  30. M.C. Flemings and G.E. Nereo: Trans. TMS-AIME, 1967, vol. 239, pp. 1449-61.

    CAS  Google Scholar 

  31. R. Mehrabian, M. Keane, and M.C. Flemings: Metall. Trans., 1970, vol. 1, pp. 1209-20.

    CAS  Google Scholar 

  32. M.G. Worster: Annu. Rev. Fluid Mech., 1997, vol. 29, pp. 91-122.

    Article  MathSciNet  ADS  Google Scholar 

  33. M.G. Worster: J. Fluid Mech., vol. 224. 1991, pp. 335-59.

    Article  MATH  CAS  ADS  Google Scholar 

  34. W.H. Yang, W. Chen, K.M. Chang, S. Mannan, and J. deBarbadillo: Metall. Mater. Trans. vol. 31A, 2001, pp. 397-406.

    Article  Google Scholar 

  35. C. Beckermann, J.P. Gu, and W.J. Boettinger: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2545-57.

    Article  CAS  Google Scholar 

  36. J.C. Ramirez and C. Beckermann: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1525-36.

    Article  CAS  ADS  Google Scholar 

  37. D.R. Poirier: Metall. Trans B, 1987, vol.18B, pp. 245-55.

    Article  CAS  ADS  Google Scholar 

  38. J.R. Sarazin and A. Hellawell: Metall. Trans. A, 1988, vol. 19A, pp. 1861-71.

    CAS  ADS  Google Scholar 

  39. A.E. Scheidegger: The Physics of Flow Through Porous Media, rev. ed., MacMillan, New York, NY, 1960, pp. 76-79.

  40. P. Auburtin, S.L. Cockcroft, A. Mitchell, and T. Wang: Superalloys 2000, Eds. T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra, TMS, 2000, Warrendale, PA, pp. 255-61.

    Google Scholar 

  41. L. Yuan, G. Djambazov, P.D. Lee, and K. Pericleous: Int. J. Mod. Phys. B, 2009, vol. 23, pp. 1584-90.

    Article  CAS  ADS  Google Scholar 

  42. P. Auburtin: Ph.D. Dissertation, University of British Columbia, Vancouver, BC, Canada, 1998.

  43. M. Muskat: The Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill, New York, NY, 1937.

    MATH  Google Scholar 

  44. M.S. Bhat, D.R. Poirier, J.C. Heinrich, and D. Nagelhout: Scripta Metall. Mater., 1994, vol. 31, pp. 339-44.

    Article  CAS  Google Scholar 

  45. S. Ganesan and D.R. Poirier: Metall. Trans. B, 1990, vol. 21B, pp. 173-81.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

Jairo Valdés acknowledges the financial support received by the Fulbright/Colciencias y el Departamento Nacional de Planeación scholarship as well as the support from the Universidad del Valle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingbo Liu.

Additional information

Manuscript submitted August 27, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdés, J., King, P. & Liu, X. On the Formulation of a Freckling Criterion for Ni-Based Superalloy Vacuum Arc Remelting Ingots. Metall Mater Trans A 41, 2408–2416 (2010). https://doi.org/10.1007/s11661-010-0331-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0331-2

Keywords

Navigation