Skip to main content
Log in

High Efficient Impeller for Rotary Gas Injection in Aluminum Melt

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In rotary gas injection (RGI), which is widely used in aluminum industry, impurities are removed by reaction with halide-containing chemicals injected into the melt. However, the constantly increasing concern on environmental protection obliges aluminum makers to eliminate or significantly reduce their usage. In this study, aiming at enhancing the efficiency of chlorine gas treatment for impurities removal from the melt, we investigated the effect of impeller design on the impurity mass transfer by performing physical model experiments on CO2 absorption, particle image velocimetry (PIV) measurements and numerical simulation. It is shown that a newly designed impeller intensifies the discharged flow as compared to the conventional impeller case that forces the formed bubbles to move to the fragmentation zone near the impeller blade tip. This results in an enhancement of the mass transfer. From the numerical results, it was found that these phenomena could be explained by the trailing vortex structure near the impeller blades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. Yamamoto, H. Takahashi, S.V. Komarov, M. Shigemitsu, R. Taniguchi, and Y. Ishiwata: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3363–72. https://doi.org/10.1007/s11663-021-02265-9.

    Article  CAS  Google Scholar 

  2. J.-F. Bilodeau and Y. Kocaefe: Light Met., 2001, vol. 2001, pp. 1009–15.

    Google Scholar 

  3. W. Bujalski, M. Kimata, N. Nayan, J.L. Song, M.R. Jolly, and A.W. Nienow: Chem. Eng. Technol., 2004, vol. 27, pp. 310–14. https://doi.org/10.1002/ceat.200401982.

    Article  CAS  Google Scholar 

  4. F. Chiti, A. Paglianti, and W. Bujalski: Chem. Eng. Res. Des., 2004, vol. 82, pp. 1105–11. https://doi.org/10.1205/cerd.82.9.1105.44156.

    Article  CAS  Google Scholar 

  5. V.S. Warke, S. Shankar, and M.M. Makhlouf: J. Mater. Process. Technol., 2005, vol. 168, pp. 119–26. https://doi.org/10.1016/j.jmatprotec.2004.10.016.

    Article  CAS  Google Scholar 

  6. V.S. Warke, G. Tryggvason, and M.M. Makhlouf: J. Mater. Process. Technol., 2005, vol. 168, pp. 112–18. https://doi.org/10.1016/j.jmatprotec.2004.10.017.

    Article  CAS  Google Scholar 

  7. M. Saternus, T. Merder, and P. Warzecha: Solid State Phenom., 2011, vol. 176, pp. 1–10. https://doi.org/10.4028/www.scientific.net/SSP.176.1.

    Article  CAS  Google Scholar 

  8. K. Kato, T. Yamamoto, S.V. Komarov, Taniguchi, R., Ishiwata, Y.: Mater. Trans., 2019, vol. 60, pp. 2008–15. https://doi.org/10.2320/matertrans.M2019055.

  9. T. Yamamoto, K. Kato, S.V. Komarov, R. Taniguchi, and Y. Ishiwata: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1836–46. https://doi.org/10.1007/s11663-020-01842-8.

    Article  CAS  Google Scholar 

  10. J. Campbell: Mater. Sci. Technol., 2006, vol. 22, pp. 127–45. https://doi.org/10.1179/174328406X74248.

    Article  CAS  Google Scholar 

  11. D. Dispinar, S. Akhtar, A. Nordmark, M.D. Sabatino, and L. Arnberg: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3719–25. https://doi.org/10.1016/j.msea.2010.01.088.

    Article  CAS  Google Scholar 

  12. G. Gyarmati, G. Fegyverneki, M. Tokar, and T. Mende: Int. J. Metalcast., 2021, vol. 15, pp. 141–51. https://doi.org/10.1007/s40962-020-00428-z.

    Article  CAS  Google Scholar 

  13. D. Dispinar and J. Campbell: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3860–65. https://doi.org/10.1016/j.msea.2011.01.084.

    Article  CAS  Google Scholar 

  14. S.T. Johansen, S. Graadahl, and T.F. Hagelien: Appl. Math. Model., 2004, vol. 28, pp. 63–77. https://doi.org/10.1016/S0307-904X(03)00119-7.

    Article  Google Scholar 

  15. Bagherpour-Torghabeh, R. Raiszadeh, and H. Doostmohammadi: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3456–69. https://doi.org/10.1007/s11663-018-1414-5.

    Article  CAS  Google Scholar 

  16. T. Yamamoto, Y. Fang, and S.V. Komarov: Chem. Eng. J., 2019, vol. 367, pp. 25–36. https://doi.org/10.1016/j.cej.2019.02.130.

    Article  CAS  Google Scholar 

  17. T. Yamamoto, W. Kato, S.V. Komarov, and Y. Ishiwata: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2547–56. https://doi.org/10.1007/s11663-019-01681-2.

    Article  CAS  Google Scholar 

  18. M. Saternus: J. Achiev. Mater. Manuf. Eng., 2012, vol. 55, pp. 285–90.

    Google Scholar 

  19. L.I. Kiss, J.F. Bilodeau: Proceedings of Conference On Metallurgists 2001, Toronto, 2001.

  20. F. Kerdouss, L. Kiss, P. Proulx, J.F. Bilodeau, and C. Dupuis: Int. J. Chem. Reactor Eng., 2005, vol. 3, p. A35. https://doi.org/10.2202/1542-6580.1217.

    Article  Google Scholar 

  21. E.R. Gómez, R. Zenit, C.G. Rivera, G. Trápaga, and M.A. Ramírez-Argáez: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 423–35. https://doi.org/10.1007/s11663-012-9774-8.

    Article  CAS  Google Scholar 

  22. E.R. Gómez, R. Zenit, C.G. Rivera, G. Trápaga, and M.A. Ramírez-Argáez: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 974–83. https://doi.org/10.1007/s11663-013-9845-5.

    Article  CAS  Google Scholar 

  23. M. Hernández-Hernández, J.L. Camacho-Martínez, C. González-Rivera, and M.A. Ramírez-Argáez: J. Mater. Process. Technol., 2016, vol. 236, pp. 1–8. https://doi.org/10.1016/j.jmatprotec.2016.04.031.

    Article  CAS  Google Scholar 

  24. D. Abreu-López, A. Amaro-Villeda, A. Acosta-González, C. González-Rivera, and M.A. Ramírez-Argáez: Metals, 2017, vol. 7, p. 132. https://doi.org/10.3390/met7040132.

    Article  CAS  Google Scholar 

  25. E. Mancilla, W. Cruz-Méndez, I.E. Garduño, C. González-Rivera, M.A. Ramírez-Argáez, and G. Ascanio: Chem. Eng. Res. Des., 2017, vol. 118, pp. 158–65. https://doi.org/10.1016/j.cherd.2016.11.031.

    Article  CAS  Google Scholar 

  26. D. Abreu-López, A. Dutta, J.L. Camacho-Martínez, G. Trápaga-Martínez, and M.A. Ramírez-Argáez: JOM, 2018, vol. 70, pp. 2958–67. https://doi.org/10.1007/s11837-018-3147-y.

    Article  CAS  Google Scholar 

  27. T. Yamamoto, A. Suzuki, S.V. Komarov, and Y. Ishiwata: J. Mater. Process. Technol., 2018, vol. 261, pp. 164–72. https://doi.org/10.1016/j.jmatprotec.2018.06.012.

    Article  CAS  Google Scholar 

  28. J.M.T. Vasconcelos, S.C.P. Orvalho, A.M.A.F. Rodrigues, and S.S. Alves: Ind. Eng. Chem. Res., 2000, vol. 39, pp. 203–13. https://doi.org/10.1021/ie9904145.

    Article  CAS  Google Scholar 

  29. D. Mesa and P.R. Brito-Parada: Chem. Eng. Res. Des., 2020, vol. 160, pp. 356–69. https://doi.org/10.1016/j.cherd.2020.05.029.

    Article  CAS  Google Scholar 

  30. Y. Nakai, I. Sumi, N. Kikuchi, K. Tanaka, and Y. Miki: ISIJ Int., 2017, vol. 57, pp. 1029–36. https://doi.org/10.2355/isijinternational.ISIJINT-2017-063.

    Article  CAS  Google Scholar 

  31. Y. Nakai, Y. Hino, I. Sumi, N. Kikuchi, Y. Uchida, and Y. Miki: ISIJ Int., 2015, vol. 55, pp. 1398–1407. https://doi.org/10.2355/isijinternational.55.1398.

    Article  CAS  Google Scholar 

  32. Q. Wang, S. Jia, F. Tan, G. Li, D. Ouyang, S. Zhu, W. Sun, and Z. He: Metall. Mater. Trans. B, 2021, vol. 52, pp. 1085–94. https://doi.org/10.1007/s11663-021-02080-2.

    Article  CAS  Google Scholar 

  33. Q. Li, X. Shen, S. Guo, M. Li, and Z. Zou: Steel Res. Int., 2021, vol. 92, p. 2100239. https://doi.org/10.1002/srin.202100239.

    Article  CAS  Google Scholar 

  34. T. Yamamoto and S.V. Komarov: J. Jpn. Inst. Light Metals, 2018, vol. 68, pp. 677–84. https://doi.org/10.2464/jilm.68.677.

    Article  CAS  Google Scholar 

  35. K. Matsuzaki, T. Shimizu, Y. Murakoshi, and K. Takahashi: Light Metals, 2011, vol. 2011, pp. 1199–1203.

    Google Scholar 

  36. A. Suzuki, T. Yamamoto, M. Shigemitsu, R. Taniguchi, Y. Ishiwata, S. Komarov: Air bubble dispersion device and impeller, 2021, PCT/JP2020/016035.

  37. S. Inada, T. Watanabe, and K. Araki: Tetsu-To-Hagane, 1976, vol. 62, pp. 807–16. https://doi.org/10.2355/tetsutohagane1955.62.7_807.

    Article  CAS  Google Scholar 

  38. G.A. Hill: Ind. Eng. Chem. Res., 2006, vol. 45, pp. 5796–5800. https://doi.org/10.1021/ie060242t.

    Article  CAS  Google Scholar 

  39. S.V. Komarov, N. Noriki, K. Osada, M. Kuwabara, and M. Sano: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 809–18. https://doi.org/10.1007/s11663-007-9086-6.

    Article  CAS  Google Scholar 

  40. R.I. Issa: J. Comput. Phys., 1986, vol. 62, pp. 40–65. https://doi.org/10.1016/0021-9991(86)90099-9.

    Article  Google Scholar 

  41. L.S. Caretto, A.D. Gosman, S.V. Patankar, and D.B. Spalding: Proc. Third Int. Conf. Numer. Methods Fluid Mech., 1972, pp. 60–68. https://doi.org/10.1007/BFb0112677.

  42. T. Yamamoto, Y. Fang, and S.V. Komarov: Chem. Eng. Sci., 2019, vol. 197, pp. 26–36. https://doi.org/10.1016/j.ces.2018.12.007.

    Article  CAS  Google Scholar 

  43. T. Yamamoto and S.V. Komarov: Chem. Eng. Sci., 2019, vol. 207, pp. 1007–16. https://doi.org/10.1016/j.ces.2019.07.019.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present research is supported partly by Collaborative Research Program for Young Scientists of ACCMS and IIMV, Kyoto University. A part of this work was assisted by Mr. Wataru Kato, a Bachelor student at Tohoku University.

Conflict of interest

This study was partly funded by Nippon Light Metal Company, Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Yamamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, T., Suzuki, A., Komarov, S.V. et al. High Efficient Impeller for Rotary Gas Injection in Aluminum Melt. Metall Mater Trans B 53, 2587–2599 (2022). https://doi.org/10.1007/s11663-022-02553-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02553-y

Navigation