Skip to main content
Log in

Physical Modeling of Fluid Flow in Ladles of Aluminum Equipped with Impeller and Gas Purging For Degassing

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the current study a transparent water physical model was developed to study fluid flow and turbulent structure of aluminum ladles for degassing treatment with a rotating impeller and gas injection. Flow patterns and turbulent structure in the ladle were measured with the particle image velocimetry technique. The effects of process parameters such as rotor speed, gas flow rate, and type of rotor on the flow patterns and on the vortex formation were analyzed using this model, which control degassing kinetics. In addition, a comparison between two points of gas injection was performed: (a) conventional gas injection through the shaft and (b) a “novel” gas injection technique through the bottom of the ladle. Results show that the most significant process variable on the stirring degree of the bath was the angular speed of the impeller, which promotes better stirred baths with smaller and better distributed bubbles. A gas flow rate increment is detrimental to stirring. Finally, although the injection point was the less-significant variable, it was found that the “novel” injection from the bottom of the ladle improves the stirring in the ladle, promotes a better distribution of bubbles, and shows to be a promising alternative for gas injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Maniruzamman, M. Makhlouf, Phase Separation Technology in Aluminum Melt Treatment, A Monograph, AFS, Des Plaines, IL 2000.

    Google Scholar 

  2. R.D. Peterson and P.A. Wells: In Light Metals 1992. The Minerals, Metals & Materials Soc., Warrendale, PA, 1992, vol. 121, pp. 1023–29.

  3. B. Prillhofer, H. Antrekowitsch, H. Böttcher, and P. Enright: in Light Metals 2008. The Minerals, Metals & Materials Soc., Warrendale, PA, 2008, vol. 2008, pp. 603–08.

  4. A. Sieverts: Z. Metallkunde, 1929, vol. 21, pp. 37-46.

    CAS  Google Scholar 

  5. C.E. Ransley and H. Neufeld: J. Inst. Metals, 1947, vol. 74, pp. 559-620.

    Google Scholar 

  6. W.R. Opie and W.J. Grant: Trans. AIME, 1950, vol. 188, pp. 1237-1241.

    CAS  Google Scholar 

  7. A.G. Szekely: US Patent 3,870,511, 1975.

  8. J.F. Grandfield, D.W. Irwin, S. Brumale and C.J. Simansen: in Light Metals 1990. The Minerals, Metals & Materials Soc., Warrendale, PA, 1990.

  9. M. Nilmani, P.K. Thay, and C.J. Simensen: Light Metals 1992. The Minerals, Metals & Materials Soc., Warrendale, PA, 1992, vol. 121, pp. 939–46.

  10. Y. Ohno, D.T. Hampton, and A.W. Moores: Light Metals 1993. The Minerals, Metals & Materials Soc. (TMS), Warrendale, PA, 1993, vol. 122, pp. 915–21.

  11. M. Nilmani, P.K. Thay, C.J. Simansen, and D.W. Irwin: Light Metals 1990. The Minerals, Metals & Materials Soc., Warrendale, PA, 1990, vol. 119, pp. 747–54.

  12. F. Boeuf, M. Rey, and E. Wuilloud: in Light Metals 1993. The Minerals, Metals & Materials Soc., Warrendale, PA, 1990, vol. 122, pp. 927–32.

  13. M. Saternus, J. Botor: METALURGIJA, 2009, vol. 48, pp. 175-179.

    CAS  Google Scholar 

  14. S.T. Johansen, S. Grådahl, P. O. Grøntvedt, P. Tetlie, R. Gammelsæter, K. Venås, P. Skaret, E. Myrbostad and B. Rasch: Light Metals 1997. The Minerals, Metals and Materials Society, Warrendale, PA, 1997, vol. 126, pp. 663–66.

  15. M. Guofa, Q. Shouping, L. Xiangyu, and N. Jitai: Mater. Sci. Eng. A, 2009, vol. 499, pp. 195–99.

    Article  Google Scholar 

  16. A. Fjeld, S. Edussuriya, J.W. Evans, and A. Mukhopadhyay: Light Metals 2005. The Minerals, Metals and Materials Soc., Warrendale, PA, 2005, vol. 34, pp. 963–68.

  17. J.L. Camacho-Martínez, M.A. Ramírez-Argáez, R. Zenit, A. Juárez-Hernández, J.D. Oscar Barceinas, and G. Trápaga: Mater. Manuf. Processes, 2010, vol. 25, pp. 1–11.

  18. E. Ramos-Gómez, R. Zenit, C. González-Rivera, G. Trapaga, and M. Ramírez-Argáez: Metall. Mater. Trans. B, 2013, vol. 44, pp. 423-435.

    Article  Google Scholar 

Download references

Acknowledgments

Marco A. Ramírez-Argáez is greatful to Cinvestav for the support provided whole writing this article during his sabbatical year at Cinvestav, Unidad Querétaro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Ramírez-Argáez.

Additional information

Manuscript submitted June 4, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, E.R., Zenit, R., Rivera, C.G. et al. Physical Modeling of Fluid Flow in Ladles of Aluminum Equipped with Impeller and Gas Purging For Degassing. Metall Mater Trans B 44, 974–983 (2013). https://doi.org/10.1007/s11663-013-9845-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9845-5

Keywords

Navigation