Skip to main content
Log in

Removal of Bifilms from Al Melts by Stirring in Unbaffled and Baffled Crucibles

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The free surface of aluminum melt, during stirring under different rotation speeds in unbaffled and baffled crucibles, was simulated numerically using a RANS turbulence model coupled with a particle-tracking method. The effect of mechanical stirring of Al melts containing 0.3, 0.7, and 4.5 wt pct Mg in unbaffled and baffled crucibles on the rate of elimination of bifilms from the melt was also investigated using a reduced pressure test. The results showed that the stirring increased the rate of removal of bifilms from the melt due to an increase in the rate of formation of cracks on the bifilms. Using baffles in the crucible accelerated the rate of removal of bifilms by changing the pattern of movement of bifilms in the melt. The critical stirring speeds, above which the oxide layer on the Al melt could submerge into the bulk liquid, were determined by the simulation. It was confirmed by the experimental results to be about 158 and 420 RPM for the unbaffled and baffled crucibles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

D :

Rotor diameter (m)

d p :

Particle diameter (m)

F D :

Drag force (N)

F g :

Gravitational force vector (N)

Fr:

Froude number (—)

Fr*:

Modified Froude number (—)

FrCr :

Critical Froude number (—)

g :

Gravity acceleration (m s−2)

I :

Identity matrix (—)

k :

Turbulent kinetic energy (m2 s−2)

m p :

Particle mass (kg)

N :

Stirring speed (s−1)

N Cr :

Critical stirring speed (s−1)

P :

Pressure (Pa)

P k :

Turbulent energy production (kg m−1 s−3)

r :

Radial distance (m)

t :

Time (s)

u :

Fluid velocity (m s−1)

v :

Velocity of particle (m s−1)

V ss :

Free surface velocity (m s−1)

We:

Weber number (—)

ε :

Turbulent dissipation rate (m2 s−3)

μ :

Dynamic viscosity (Pa s)

μ T :

Turbulent dynamic viscosity (Pa s)

ρ :

Fluid density (kg m−3)

ρ P :

Particle density (kg m−3)

σ :

Surface tension (N m−1)

τ P :

Response time of particle velocity (s)

References

  1. J. Campbell: Complete Casting Handbook, 2nd. ed., Butterworth-Heinemann, London, 2015.

    Google Scholar 

  2. R. Raiszadeh, W. D. Griffiths: Metall Mater Trans B, 2006, vol. 37B, pp. 865-871.

    Article  CAS  Google Scholar 

  3. R. Raiszadeh, W. D. Griffiths: Metall Mater Trans B, 2008, vol. 39B, pp. 298-303.

    Article  CAS  Google Scholar 

  4. M. Aryafar, R. Raiszadeh, A. Shalbafzadeh: J Mater Sci, 2010, vol. 45, pp. 3041-3051.

    Article  CAS  Google Scholar 

  5. F. Najafzadeh-Bakhtiarani, R. Raiszadeh: J Mater Sci, 2010, vol. 46, pp. 1305-1315.

    Article  Google Scholar 

  6. F. Najafzadeh-Bakhtiarani, R. Raiszadeh: Metall Mater Trans B, 2011, vol. 42B, pp. 331-340.

    Article  Google Scholar 

  7. S. Amirinejhad, R. Raiszadeh, H. Doostmohammadi: Int J Cast Metal Res, 2013, vol. 26, pp. 330-338.

    Article  CAS  Google Scholar 

  8. A. Ahmadpour, R. Raiszadeh, H. Doostmohammadi: Int J Cast Metals Res, 2014, vol. 27, pp. 221-229.

    Article  CAS  Google Scholar 

  9. H. BartarEsfahani, R. Raiszadeh, H. Doostmohammadi: Metall Mater Trans A, 2016, vol. 47, pp. 1331-1338.

    Article  CAS  Google Scholar 

  10. H. Bagherpour-Torghabeh, R. Raiszadeh, H. Doostmohammadi: Metal Matter Trans B, 2017, vol. 48, pp. 3174-3184.

    Article  CAS  Google Scholar 

  11. D. Rajavathsavai, A. Khapre, B. Munshi: International Scholarly and Scientific Research & Innovation, 2014, vol. 8, pp. 1470-1475.

    Google Scholar 

  12. W. J. Genck, D. S. Dickey, F. A. Baczek, D. C. Bedell: Perry’s Chemical Enginners’ Handbook, Section 18, Liquid-Solid Operations and Equipment, 8th ed., McGraw-Hill, Newyork, USA, 2008.

    Google Scholar 

  13. P. M. Armenante, C. Luo, C.-C. Chou, I. Fort, J. Medek: ChemEngSci, 1997, vol. 52, pp. 3483-3492.

    CAS  Google Scholar 

  14. R. Alcamo, G. Micale, F. Grisafi, A. Brucato, M. Ciofalo: ChemEngSci, 2005, vol. 60, pp. 2303-2316.

    CAS  Google Scholar 

  15. M. Jahoda, M. Moštěk, I. Fořt, P. Hasal: Can J ChemEng, 2011, vol. 89, pp. 717-724.

    Article  CAS  Google Scholar 

  16. A. Serra, M. Campolo, A. Soldati: ChemEngSci, 2001, vol. 56, pp. 2715-2720.

    CAS  Google Scholar 

  17. S. Motamedvaziri, P. M. Armenante: ChemEngSci, 2012, vol. 81, pp. 231-250.

    CAS  Google Scholar 

  18. W. Bujalski, Z. Jaworski, A.W. Nienow: Trans IChemE, 2002, vol. 80, Part A, pp. 97–104.

  19. J. P. Torré, D. F. Fletcher, T. Lasuye, C. Xuereb: ChemEngSci, 2007, vol. 62, pp. 6246-6262.

    Google Scholar 

  20. J. N. Haque, T. Mahmud, K. J. Roberts: IndEngChem Res, 2006, vol. 45, pp. 2881-2891.

    CAS  Google Scholar 

  21. K. Satpathy, K. Velusamy, B. S. V. Patnaik, P. Chellapandi: Int J Heat Mass Transfer, 2013, vol. 60, pp. 392-405.

    Article  CAS  Google Scholar 

  22. H. P. Greenspan: The theory of rotating fluids, Breukelen Press, Brookline, MA, USA, 1990.

    Google Scholar 

  23. D. Kuzmin, O. Mierka, S. Turek: Int. J. Computing Science and Mathematics, 2007, vol. 1, pp. 193-206.

    Article  Google Scholar 

  24. D. C. Wilcox: Turbulence Modeling for CFD, 2nd. ed., D C W Industries, Flintridge, CA, USA, 1998.

    Google Scholar 

  25. R.S. Brodkey, H.C. Hershey: Transport Phenomena, a Unified Approach, McGraw-Hill, New York.

  26. M. H. Ghanaatian, R. Raiszadeh: Mater SciTechnol, 2016, vol. 33, pp. 2-8.

    Google Scholar 

  27. C. E. Ransley, H. Neufeld: J. Inst. Metals, 1948, vol. 74, pp. 599-620.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Raiszadeh.

Additional information

Manuscript submitted February 27, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagherpour-Torghabeh, H., Raiszadeh, R. & Doostmohammadi, H. Removal of Bifilms from Al Melts by Stirring in Unbaffled and Baffled Crucibles. Metall Mater Trans B 49, 3456–3469 (2018). https://doi.org/10.1007/s11663-018-1414-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1414-5

Keywords

Navigation