Skip to main content
Log in

Numerical Study on Desulfurization Behavior During Kanbara Reactor Hot Metal Treatment

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The hot metal desulfurization in Kanbara Reactor (KR) metal treatment was simulated in this study via a transient-coupled 3D numerical model of the two-phase flow, heat transfer, and particle motion desulfurization processes. The KR impeller stirring was described via the multiple reference frame model. The volume of fluid approach was employed to capture the air-hot metal interface. The particle motion and aggregation were defined by the two-way coupled Euler–Lagrangian method. A desulfurization kinetic model was simultaneously introduced to represent the sulfur mass transfer rate. The effect of the initial diameter of desulfurizing agent (DA) particles on the desulfurization efficiency was quantitatively assessed. The lowest sulfur content was observed in the impeller vicinity and the highest one in the inactive colder liquid metal at the vessel bottom. With the DA particle initial diameter reduction from 3.0 to 0.5 mm, the overall desulfurization rate was increased from 83.2 to 97.1 pct. Insofar the specific surface area of smaller particles exceeded that of larger ones, they had higher motion velocities and heating rates, creating a greater reactivity for the desulfurization. However, desulfurization at the vessel bottom was only slightly enhanced using smaller DA particles, so the overall improvement did not exceed 20 pct. Further enhancement is envisaged by refining the impeller design and particle-adding technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(c\) :

Sulfur concentration (kg/m3)

\(\overline{c}_{{\text{p}}}\) :

Specific heat of mixture phase at constant pressure (J/(kg·K))

\(D_{{\text{S}}}\) :

Diffusion coefficient of sulfur in hot metal (m2/s)

\(d_{{\text{p}}}\) :

DA particle diameter (m)

\(\overline{E}\) :

Internal energy of the mixture phase (J/m3)

\(\vec{F}_{{\text{b}}}\) :

Buoyancy force (N/m3)

\(\vec{F}_{{{\text{Coriolis}}}}\) :

Coriolis force (N/m3)

\(\vec{F}_{{{\text{centri}}}}\) :

Centrifugal force (N/m3)

\(\vec{F}_{{\text{d}}}\) :

Drag force (N/m3)

\(\vec{F}_{{\text{g}}}\) :

Gravity force (N/m3)

\(\vec{F}_{{\text{l}}}\) :

Lift force (N/m3)

\(\vec{F}_{{\text{p}}}\) :

Pressure gradient force (N/m3)

\(\vec{F}_{{{\text{st}}}}\) :

Interfacial tension (N/m3)

\(\vec{F}_{{{\text{vm}}}}\) :

Virtual mass force (N/m3)

\(\overline{H}\) :

Enthalpy of mixture phase (J/kg)

\(\overline{h}\) :

Sensible enthalpy of mixture phase (J/kg)

\(\overline{h}_{{{\text{ref}}}}\) :

Reference sensible enthalpy of mixture phase (J/kg)

\(k_{{{\text{eff}}}}\) :

Effective thermal conductivity (W/(m·K))

\(M_{{{\text{CaO}}}}\) :

Molecular weight of CaO (g/mol)

\(M_{{\text{S}}}\) :

Molecular weight of sulfur (g/mol)

\(m_{{\text{p}}}\) :

Particle mass (kg)

\(p\) :

Local static pressure (Pa)

\(Re\) :

Reynolds number

R :

Ideal gas constant

\(\vec{r}\) :

Position vector

\(Sc\) :

Schmidt number

\(S_{{{\text{des}}}}\) :

Desulfurization rate (kg/s)

\(\vec{S}_{{{\text{mp}}}}\) :

Momentum exchange between hot metal and DA particle

\(Sh\) :

Sherwood number

\(T\) :

Temperature (K)

\(T_{{{\text{ref}}}}\) :

Reference temperature (K)

\(t\) :

Time (s)

\(\vec{u}_{{\text{r}}}\) :

Moving reference frame velocity relative to the stationary reference frame (m/s)

\(\vec{v}\) :

Absolute velocity (m/s)

\(\vec{v}_{{\text{p}}}\) :

Particle velocity (m/s)

\(\vec{v}_{{\text{r}}}\) :

Relative velocity (m/s)

\(\vec{v}_{{\text{t}}}\) :

Translational frame velocity (m/s

\(\alpha\) :

Volume fraction of hot metal

\(\beta\) :

Sulfur mass transfer rate (m/s)

\(\delta\) :

Thickness of CaS layer (m)

\(\overline{\mu }\) :

Viscosity of mixture phase (Pa·s)

\(\overline{\rho }\) :

Density of mixture phase (kg/m3)

\(\rho_{{{\text{CaO}}}}\) :

Density of CaO (kg/m3)

\(\overline{\phi }\) :

Physical property of mixture phase

\(\phi_{{\text{g}}}\) :

Physical property of air

\(\phi_{{\text{m}}}\) :

Physical property of hot metal

\(\vec{\omega }\) :

Angular velocity (rad/s

References

  1. F.N.H. Schrama, E.M. Beunder, B. Van den Berg, Y. Yang, R. Boom, Ironmak. Steelmak. 44, 333–343 (2017)

    Article  CAS  Google Scholar 

  2. V.V. Visuri, T. Vuolio, T. Haas, T. Fabritius, Steel Res. Int. 91, 1900454 (2020)

    Article  CAS  Google Scholar 

  3. F.M. Torres, C.A. da Silva, I.A. da Silva, P.H.R. Vaz de Melo, M.A. Lourenço, Tecnol. Metal. Mater. Miner. 14, 204–210 (2017)

    Article  Google Scholar 

  4. P. Tripathi, D.S. Kumar, R. Sah, V.R. Sekhar, Ironmak. Steelmak. 44, 421–429 (2017)

    Article  CAS  Google Scholar 

  5. W.J. Ma, H.B. Li, Y. Cui, B. Chen, G.L. Liu, J.L. Ji, ISIJ Int. 57, 214–219 (2017)

    Article  CAS  Google Scholar 

  6. Y. Nakai, I. Sumi, N. Kikuchi, K. Tanaka, Y. Miki, ISIJ Int. 57, 1029–1036 (2017)

    Article  CAS  Google Scholar 

  7. D.S. Huang, F.C. Huang, Appl. Therm. Eng. 73, 220–226 (2014)

    Google Scholar 

  8. Y. Nakai, I. Sumi, H. Matsuno, N. Kikuchi, Y. Kishimoto, ISIJ Int. 50, 403–410 (2010)

    Article  CAS  Google Scholar 

  9. J.H. Ji, R.Q. Liang, J.C. He, ISIJ Int. 57, 453–462 (2017)

    Article  CAS  Google Scholar 

  10. C. Fan, A. GoSa, L.F. Zhang, Q.C. Liu, D.Y. Chen, 147th Annu Meet. Exhib. Suppl. Proc. (Springer, Cham, Switzerland, 2018), pp. 431–40

  11. M.L. He, N. Wang, M. Chen, M. Chen, C.F. Li, Powder Technol. 361, 455–461 (2020)

    Article  CAS  Google Scholar 

  12. Q. Wang, R.T. Wang, Z. He, G.Q. Li, B.K. Li, H.B. Li, Int J. Heat Mass Transf. 125, 1333–1344 (2018)

    Article  Google Scholar 

  13. A. Serra, M. Campolo, A. Soldati, Chem. Eng. Sci. 56, 2715–2720 (2001)

    Article  CAS  Google Scholar 

  14. G.M. Cartland Glover, J.J. Fitzpatrick, Chem. Eng. J. 127, 11–22 (2007)

    Article  Google Scholar 

  15. H.L. Zhao, C. Lv, Y. Liu, T.A. Zhang, JOM 67, 1451–1458 (2015)

    Article  CAS  Google Scholar 

  16. C. Haringa, R. Vandewijer, R.F. Mudde, Chem. Eng. Res. Des. 136, 870–885 (2018)

    Article  CAS  Google Scholar 

  17. R. Franzke, S. Sebben, T. Bark, E. Willeson, A. Broniewicz, Energies 12, 2934 (2019)

    Article  CAS  Google Scholar 

  18. Q. Wang, Y. Liu, A. Huang, W. Yan, H.Z. Gu, G.Q. Li, Metall. Mater. Trans. B 51B, 276–292 (2020)

    Article  Google Scholar 

  19. C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39, 201–225 (1981)

    Article  Google Scholar 

  20. J.U. Brackbill, D.B. Kothe, C. Zemach, J. Comput. Phys. 100, 335–354 (1992)

    Article  CAS  Google Scholar 

  21. Q. Wang, Y. Liu, A. Huang, W. Yan, H.Z. Gu, G.Q. Li, Powder Technol. 367, 358–375 (2020)

    Article  CAS  Google Scholar 

  22. M. Azadi, M. Azadi, A. Mohebbi, J. Hazard. Mater. 182, 835–841 (2010)

    Article  CAS  Google Scholar 

  23. N.N. Qi, H. Zhang, K. Zhang, G. Xu, Y.P. Yang, Particuology 11, 317–326 (2013)

    Article  Google Scholar 

  24. H.H. Zhang, H.L. You, H.S. Lu, K. Lin, Z.Y. Zhang, L.X. Jiang, Appl. Sci. 10, 1186 (2020)

    Article  CAS  Google Scholar 

  25. A.N. Conejo, F.R. Lara, M. Macias-Hernández, R.D. Morales, Steel Res. Int. 78, 141–150 (2007)

    Article  CAS  Google Scholar 

  26. D. Lindström, S.C. Du, Metall. Mater. Trans. B 46B, 83–92 (2015)

    Article  Google Scholar 

  27. F. Oeters, P. Strohmenger, W. Pluschkell, Arch. Eisenhüttenwes. 44, 727–733 (1973)

    Article  CAS  Google Scholar 

  28. W.E. Ranz, W.R. Marschall, Chem. Eng. Prog. 48, 141–146 (1952)

    CAS  Google Scholar 

  29. W.E. Ranz, W.R. Marschall, Chem. Eng. Prog. 48, 173–180 (1952)

    CAS  Google Scholar 

  30. Y. Deng, J.L. Zhang, K.X. Jiao, Ironmak. Steelmak. 45, 773–777 (2018)

    Article  CAS  Google Scholar 

  31. B.Y. Li, Y.J. Li, H. Sun, Y.Z. Wang, Z.Y. Wang, Energy Fuels 34, 6462–6473 (2020)

    Article  CAS  Google Scholar 

  32. K. Yasuji, Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 9, 78–83 (1957)

    Google Scholar 

  33. K. Yasuji, Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 9, 520–526 (1957)

    Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support of this study by the National Natural Science Foundation of China (Grant No. 51974211) and the Special Project of Central Government for Local Science and Technology Development of Hubei Province of China (Grant Nos. 2019ZYYD003 and 2019ZYYD076). We also thank the Baoshan Iron and Steel Co., Ltd. for providing the supporting data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 23, 2020; accepted January 9, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Jia, S., Tan, F. et al. Numerical Study on Desulfurization Behavior During Kanbara Reactor Hot Metal Treatment. Metall Mater Trans B 52, 1085–1094 (2021). https://doi.org/10.1007/s11663-021-02080-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02080-2

Navigation