Skip to main content
Log in

Mass Transfer Study of a Batch Aluminum Degassing Ladle with Multiple Designs of Rotating Impellers

  • Multiphase Flows in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A mathematical model has been developed to describe the mass transfer in a batch aluminum degassing ladle utilizing the rotor-injector technique. The model uses a Eulerian algorithm for the multiphase system and a dispersed renormalization group kε model to account for the turbulence in the system. The model was employed to evaluate the relative performance of the degassing kinetics of four impeller designs, i.e., nozzles with and without notches, and with four and five blades. The former two designs are commercially available, while the other two were proposed by the authors of this study. The results were validated against experimental measurements of the oxygen concentration in a physical model, and the flow pattern obtained was compared with image velocimetry. The model could satisfactorily predict the liquid velocity, gas holdup, vortex size and degassing kinetics, for the first time. The local kinetic parameter \( k_{\text{L}} a \) predicted using the rigid model was found to be an important characteristic in terms of the degassing kinetics and depends on the bubble size distribution and the stirring of the liquid in the vessel. The proposed impeller designs help to distribute the bubbles more uniformly throughout the ladle, increasing momentum transfer from the impeller to liquid and thus improving gas–liquid mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.A. Engh, Principles of Metal Refining (New York: Oxford University Press, 1992).

    Google Scholar 

  2. T.A. Engh and T. Pedersen, Removal of Hydrogen from Molten Aluminium by Gas Purging (Cham: Springer, 1984), p. 218.

    Google Scholar 

  3. L. Zhang, X. Lv, A.T. Torgerson, and M. Long, Miner. Process. Extr. Metall. Rev. 32, 150 (2011).

    Article  Google Scholar 

  4. L. Zhang, X. Lv, L.N. Wiredu Damoah, and C. Bai, Miner. Process. Extr. Metall. Rev. 33, 1 (2012).

    Article  Google Scholar 

  5. M. Saternus, JAMME 55, 285 (2012).

    Google Scholar 

  6. M. Saternus, T. Merder, and J. Pieprzyca, Arch. Metall. Mater. 60, 2887 (2015).

    Article  Google Scholar 

  7. A.A. Yawalkar, A.B.M. Heesink, G.F. Versteeg, and V.G. Pangarkar, Can. J. Chem. Eng. 80, 840 (2002).

    Article  Google Scholar 

  8. A. Kapic and T.J. Heindel, Chem. Eng. Res. Des. 84, 239 (2006).

    Article  Google Scholar 

  9. S.S. Alves, C.I. Maia, and J.M.T. Vasconcelos, Chem. Eng. Process. 43, 823 (2004).

    Article  Google Scholar 

  10. M. Hernández-Hernández, W. Cruz-Mendez, C. González-Rivera, and M.A. Ramírez-Argáez, Mater. Manuf. Process. 30, 216 (2015).

    Article  Google Scholar 

  11. J. Gimbun, C.D. Rielly, and Z.K. Nagy, Chem. Eng. Res. Des. 87, 437 (2009).

    Article  Google Scholar 

  12. W.K. Lewis and W.G. Whitman, J. Ind. Eng. Chem. 16, 1215 (1924).

    Article  Google Scholar 

  13. R. Higbie, Trans. AICHE 31, 364 (1935).

    Google Scholar 

  14. P.V. Danckwerts, J. Ind. Eng. Chem. 43, 1460 (1951).

    Article  Google Scholar 

  15. H.L. Toor and J.M. Marchello, AIChE J. 4, 97 (1958).

    Article  Google Scholar 

  16. J.C. Lamont and D.S. Scott, AIChE J. 16, 513 (1970).

    Article  Google Scholar 

  17. P.H. Calderbank, Trans. Inst. Chem. Eng. 36, 443 (1958).

    Google Scholar 

  18. N. Frossling, Gerl. Beitr. Geophys. 52, 170 (1938).

    Google Scholar 

  19. J.L. Camacho-Martínez, M.A. Ramírez-Argáez, R. Zenit-Camacho, A. Juárez-Hernández, J.D.O. Barceinas-Sánchez, and G. Trápaga-Martínez, Mater. Manuf. Process. 25, 581 (2010).

    Article  Google Scholar 

  20. E. Mancilla, W. Cruz-Méndez, I.E. Garduño, C. González-Rivera, M.A. Ramírez-Argáez, and G. Ascanio, Chem. Eng. Res. Des. 118, 158 (2017).

    Article  Google Scholar 

  21. A. Delafosse, M.-L. Collignon, M. Crine, and D. Toye, Chem. Eng. Sci. 66, 1728 (2011).

    Article  Google Scholar 

  22. P. Saarenrinne and M. Piirto, Exp. Fluids 29, S300 (2000).

    Article  Google Scholar 

  23. A. Dutta, R.P. Ekatpure, G.J. Heynderickx, A. de Broqueville, and G.B. Marin, Chem. Eng. Sci. 65, 1678 (2010).

    Article  Google Scholar 

  24. T.T. Devi and B. Kumar, JESTECH 20, 730 (2017).

    Google Scholar 

  25. P. Ranganathan and S. Sivaraman, Chem. Eng. Sci. 66, 3108 (2011).

    Article  Google Scholar 

  26. E.R. Gómez, R. Zenit, C.G. Rivera, G. Trápaga, and M.A. Ramírez-Argáez, Metall. Mater. Trans. B 44, 423 (2013).

    Article  Google Scholar 

  27. R.M. Griffith, Chem. Eng. Sci. 12, 198 (1960).

    Article  Google Scholar 

  28. A.C. Lochiel and P.H. Calderbank, Chem. Eng. Sci. 19, 471 (1964).

    Article  Google Scholar 

  29. I. Tzanakis, G.S.B. Lebon, D.G. Eskin, and K.A. Pericleous, J. Mater. Process. Technol. 229, 582 (2016).

    Article  Google Scholar 

  30. D. Abreu-López, A. Amaro-Villeda, F. Acosta-González, C. Gonzalez-Rivera, and M. Ramírez-Argáez, Metals 7, 132 (2017).

    Article  Google Scholar 

  31. V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, and C.G. Speziale, Phys. Fluids A 4, 1510 (1992).

    Article  MathSciNet  Google Scholar 

  32. J.B. Joshi, N.K. Nere, C.V. Rane, B.N. Murthy, C.S. Mathpati, A.W. Patwardhan, and V.V. Ranade, Can. J. Chem. Eng. 89, 23 (2011).

    Article  Google Scholar 

  33. K. Ng and M. Yianneskis, Chem. Eng. Res. Des. 78, 334 (2000).

    Article  Google Scholar 

  34. G. Montante, G. Micale, F. Magelli, and A. Brucato, Chem. Eng. Res. Des. 79, 1005 (2001).

    Article  Google Scholar 

  35. D. Abreu-López, National Autonomous University of Mexico (UNAM), Mexico, CDMX. Private Communication (2018)

  36. R. Biswas and R.C. Strawn, Appl. Numer. Math. 26, 135 (1998).

    Article  MathSciNet  Google Scholar 

  37. G.K. Sigworth and T.A. Engh, J. Electron. Mater. 20, 447 (1991).

    Google Scholar 

Download references

Funding

Funding was provided by DGAPA UNAM (Grant No. IN114115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Ramírez-Argáez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu-López, D., Dutta, A., Camacho-Martínez, J.L. et al. Mass Transfer Study of a Batch Aluminum Degassing Ladle with Multiple Designs of Rotating Impellers. JOM 70, 2958–2967 (2018). https://doi.org/10.1007/s11837-018-3147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3147-y

Navigation